
Getting Started with Redis Streams
DATA SHEET

Redis Streams is a simple, and yet powerful data structure for managing
data streams. The data structure is built into Redis, the world’s most
popular in-memory database that delivers millions of operations per second
at sub-millisecond latency with the fewest resources. Redis Streams
creates a data channel that connects producers and a variety of consumers
with different data needs.

Streams data structure offers:
• A rich choice of options to consumers to read streaming data and data

at rest

• Consumer groups to help the consumers to coordinate among
themselves while reading the data from the same stream

• Super-fast lookup queries powered by radix trees

• Automatic eviction of data based on the upper limit

Benefits:
• Collect large volumes of data arriving in high velocity (in the order of

millions per second)

• Communicate between producers and consumers asynchronously

• Effectively manage consumption of data even when producers and
consumers don’t operate at the same rate

• Persist data when your consumers are offline or disconnected

• Scale-out the number of consumers

• Implement transaction-like data safety when consumers fail in the midst
of consuming data

Redis Enterprise Advantages

HA, Durability, DR
Tunable features for replication and persistence to maintain high
performance when persisting data to disk; Rack-aware, cross-datacenter/
region/cloud in-memory replication with unique WAN compression
technology.

Robust Security
SSL-based encrypted communication with clients, administrators and
across clusters; certificate and password-based authentication; role-based
authorization for administration.

Redis on Flash
Supports Flash memory as a RAM extender; ideal for large dataset sizes;
uses tiered memory access to deliver the same sub-millisecond latencies as
RAM while reducing costs by 70% or more.

Automation and Support
24x7 enterprise-grade support backed by expertise in managing and
scaling 550K+ Redis databases for thousands of customers in production
worldwide.

Sample Use Cases:

Image Processing: Scaling out consumers to catch up with the production
rate

Microservices: Multiple microservices consuming the same data for
different purposes

Messaging: Connect producer and one or more similar consumers

Artificial Intelligence: Many producers and consumers with varied data
needs

Redis-Streams-v2

700 E El Camino Real Suite 250, Mountain View, CA 94040 | (415) 930 9666 | redislabs.com

Adding data to a stream
1. THE DEFAULT METHOD FOR ADDING DATA
XADD [stream name] * [key] [data]

Example:
XADD mystream * name Anna

2. ADDING DATA WITH USER-MANAGED IDS FOR EACH ENTRY
XADD [stream name] [id] [key] [data]

Example:
XADD mystream 10000000 name Anna

3. ADDING DATA WITH A MAXIMUM LIMIT
XADD [stream name] MAXLEN [length] * [key] [data]

Example:
XADD mystream MAXLEN 1000000 * name Anna

4. ADDING DATA WITH AN APPROXIMATE MAXIMUM LIMIT
XADD [stream name] MAXLEN [length] * [key] [data]

Example:
XADD mystream MAXLEN ~ 1000000 * name Anna

Consuming data from the stream via consumer groups
1. CREATE A CONSUMER GROUP
XGROUP CREATE [stream name] [group name] $ [MKSTREAM]

MKSTREAM is optional. It creates the stream if it doesn’t already exist.
Example:
XGROUP CREATE mystream mygroup $ MKSTREAM

2. READ FROM A CONSUMER GROUP
XREADGROUP GROUP [group name] COUNT [n] [consumer name]
STREAMS [stream name] >
The special character “>” at the end tells Redis Stream to fetch only data
entries that are not delivered to any other consumers.
Example:
XREADGROUP GROUP mygroup COUNT 2 Alice STREAMS mystream
>

3. ACKNOWLEDGE AFTER READING
XACK [stream name] [group name] [id]

Example:
XACK mystream mygroup 1526569411111-0

4. FIND THE MESSAGES IN THE PENDING LIST – CONSUMED BUT NOT
ACKNOWLEDGE
XPENDING [stream name] [group name] - + [count]
[consumer name]

Example:
XPENDING mystream mygroup - + 10 Bob

5. CLAIM PENDING MESSAGES FROM ANOTHER CONSUMER
XCLAIM [stream name] [group name] [consumer name] [min
pending time] [id]
Example:
XCLAIM mystream mygroup Alice 0 1526569411113-0

Consuming data from the stream
1. READ EVERYTHING FROM THE BEGINNING OF THE STREAM
Situation: The stream already has the data you need to process, and you want
to process it all from the beginning.
XREAD COUNT [n] STREAMS [stream name] 0
Example:
XREAD COUNT 100 STREAMS mystream 0

2. READ EVERYTHING FROM A POINT IN THE STREAM
Situation: The stream already has the data you need to process, and you
want to process it all from a point.
XREAD COUNT [n] STREAMS [stream name] [id]
Example:
XREAD COUNT 100 STREAMS mystream 1518951481323-1

3. CONSUME DATA ASYNCHRONOUSLY (VIA A BLOCKING CALL)
Situation: Your consumer consumes and processes data faster than the rate at
which it is added to the stream.
XREAD BLOCK [milliseconds or 0] STREAMS [stream name]
[last id + 1]

Example:
XREAD BLOCK 60000 STREAMS mystream 1518951123456-1
This blocks the call indefinitely:
XREAD BLOCK 0 STREAMS mystream 1518951123456-1

4. READ ONLY NEW DATA AS IT ARRIVES
Situation: You are interested in processing only the new set of data starting
from this point in time.
XREAD BLOCK [milliseconds or 0] STREAMS [stream name] $

Example:
XREAD BLOCK 60000 STREAMS mystream $

5. ITERATE THE STREAM TO READ PAST DATA
Situation: Your data stream already has enough data, and you want to query it
to analyze data collected so far.
XRANGE [stream name] [start id] [end id]

Example:
XRANGE mystream 1518951123450-0 1518951123460-0
With count:
XRANGE mystream 1518951123450-0 1518951123460-0 COUNT
10
With no lower or upper bound:
XRANGE mystream - + COUNT 10
Reverse of XRANGE is XREVRANGE
Example:
XRANGE mystream + - COUNT 10

Quick Reference Guide

Get Started with Redis Streams
on Redis Cloud for Free Today!

Visit https://redislabs.com/get-started/
Talk to a expert today. Contact expert@redislabs.com.

