
RediSearch
RediSearch: Secondary indexing and full-text search
RediSearch is a search and secondary index engine based on the world’s
fastest in-memory database, Redis. RediSearch allows you to build
rich schemas that can drive real-time document indexing, retrieval and
aggregations. RediSearch can achieve real-time indexing (<1ms under most
conditions) because it leverages in-memory storage and highly optimized
data structures built specifically for low latency and rapid query.

Why RediSearch?
Disk-based search engines are inherently inefficient
Legacy search engines are characterized by high latency and slow writes,
a function of mechanical limits and OS-level complexities left over
from spinning disk solutions. As a result, they require internal caching
solutions to achieve high performance which, in turn, layers on additional
infrastructure requirements and complexity.

Legacy search engines need many more resources
Legacy search engines are built around burdensome coordinators and
inefficient runtimes that suck away compute resources, complicate
operation and yield unpredictable performance, especially under garbage
collection conditions. Their bloated feature sets often include functionality
that is rarely used and overly complex, leading to steep learning curves
and high infrastructure costs.

Benefits of RediSearch
1. Predictable, high performance with low latency times: RediSearch

delivers continuous results with no performance degradation,
while maintaining concurrent loads of both querying and indexing.
Redisearch is written directly in C and implemented as a Redis
module, so it can write directly to DRAM on a server without
any intermediary interpretation or layers. As a Redis module, it
implements specialized data types, optimized for index, search and
query. This yields extremely high performance for real-time indexing,
wherein index items are available for querying within a millisecond.

2. Reduced infrastructure costs: Without no need for a cache,
RediSearch reduces the overhead needed to run the search engine.
Particularly suitable for simultaneous and instantaneous indexing
and search scenarios, Redisearch scales to multi-node configurations
easily while efficiently indexing and searching billions of documents
at high performance.

3. Operational simplicity: While RediSearch inherits the performance
and operational simplicity of Redis, it doesn’t need to deal with years
of incremental bloat, thanks to its clean-sheet reimagining of search
and secondary indexing.

How it works
RediSearch starts with a schema that outlines how the data will be
incrementally indexed as documents are added. Any field in the index can
be one of four broad types:

DATA SHEET

5x Better Throughput and Latency
than Elasticsearch

0

5000

10000

15000

20000

Client Threads» 1 16 32 64 128

Simple Two Word Query"barack obama"
Throughput (requests/second)

RediSearch ElasticSearch Solr

0

10

20

30

40

50

Client Threads» 1 16 32 64 128

Simple Two Word Query "barack obama"
Latency (milliseconds)

RediSearch ElasticSearch Solr

Client Threads» 1 16 32 64 128

Autocomplete -1100 Top 2-3 Letter Prefixes
Throughput (requests/second)

0

5,000

10,000

15,000

20,000

RediSearch ElasticSearch Solr

RediSearch.indd

700 E El Camino Real Suite 250, Mountain View, CA 94040 | (415) 930 9666 | redislabs.com

1. Text for character-based data—RediSearch is multilingual and has
built-in support for 18 languages (including Chinese)

2. Numeric for data that is inherently countable
3. Geospatial for data based on real-world coordinates
4. Tags for meta-data that labels a particular document

Building a schema can be optimized and fine-tuned by numerous options
or it can be as simple as a few characters.

After a schema is established, you can add documents to RediSearch.
When documents are added, they are indexed in real time, meaning they
are available for query within 1 millisecond. Beyond the fields established
in the schema, each document has a unique identifier and a weight that
aids in the query process.

To query documents in RediSearch you can provide simple key words or
use the built-in query language that allows for very rich refinement and
filtering. The query language can natively add clauses based on any of the
fields and types, and use logical as well as parenthetical combinations to
narrow down the results.

RediSearch also has the ability to aggregate the values stored in an index.
The aggregation is based on a pipeline where values are filtered, grouped
and reduced, transformed, sorted and limited.

What are the use cases
RediSearch is ideal for search and query of frequently updated datasets.
Examples include fraud prevention, predictive alerting, dynamic catalogs,
secondary indices of large databases and many more.

No need for batch indexing or service interrupts—RediSearch’s continuous
indexing with no performance degradation makes it ideal for querying
high-volume updates, such as when millions of items need to be searched
instantaneously.

“I would say that RediSearch saved my project. It made
it feasible to create a searchable index at a very low

cost. I was struggling to decide if I should use a low-cost
relational database or a more expensive index engine like
Solr or ElasticSearch. Then I read about RediSearch and
decided to give it a try. It fit my needs perfectly and it

was super easy to set up in production.”

Victor Ruiz
BEATHUNTER.NET

Key features of RediSearch
• Full-text indexing of multiple fields in document, including:

• Exact phrase matching
• Stemming in many languages
• Chinese tokenization support
• Prefix queries
• Optional, negative and union queries

• Distributed search on billions of documents

• Numeric property indexing

• Geographical indexing and radius filters

• Incremental indexing without performance loss

• A structured query language for advanced queries, including:
• Unions and intersections
• Optional and negative queries
• Tag filtering
• Prefix matching

• Integrated aggregations engine that allows for building of pipelinable
operations, consisting of:

• Groups
• Reductions
• Sorts
• Transformations
• Limits

• A powerful auto-complete engine with fuzzy matching

• Multiple scoring models and sorting by values

• Concurrent, low-latency insertion and updates of documents

• Concurrent searches allowing long-running queries without blocking
Redis

• An extension mechanism allowing custom scoring models and query
extension

• Support for indexing existing Hash objects in Redis databases

• Support clustering* through a coordinator entity

*Note: clustering is only available in RediSearch’s Enterprise version

Get Started with RediSearch Today!
Visit https://redislabs.com/redis-enterprise/software/downloads/.
Talk to a Redise expert today. Contact expert@redislabs.com.

