
KUBERNETESEBOOK

A Guide to Modernizing Your
Cloud Infrastructure

Understanding
Kubernetes

02UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Why Kubernetes? ... 03

What is Kubernetes? .. 04

Master, Nodes, and the Control Plane ... 07

Objects .. 08

Controllers .. 15

Networking ... 17

Our Take .. 18

Table of Contents

03UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Why Kubernetes?

Kubernetes is quickly becoming the new industry-standard tool for running cloud-native applications.

As more developers and organizations move away from on-premises infrastructure to take advantage of
the cloud, advanced management is needed to ensure high availability and scalability for containerized
applications. To build and maintain applications, you need to coordinate resources across different
machine types, networks, and environments.

Kubernetes allows developers of containerized applications—like those created with Docker—to develop
more reliable infrastructure, a critical need for applications and platforms that need to respond to
events like rapid spikes in traffic or the need to restart failed services. With Kubernetes, you can now
delegate events that would require the manual intervention of an on-call developer.

Kubernetes (K8s) optimizes container orchestration deployment and management for cloud
infrastructure by creating groups, or Pods, of containers that scale without writing additional lines
of code and responding to the needs of the application. Key benefits of moving to container-centric
infrastructure with Kubernetes is knowing that infrastructure will self-heal and that there will be
environmental consistency from development through to production.

Understand fundamental concepts of Kubernetes, from the components of a Kubernetes

cluster to network model implementation. Along with a working knowledge of containers, after

reading this guide, you will be able to jump right in and deploy your first Kubernetes cluster.

04UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

What is Kubernetes?

Kubernetes is a container orchestration system that was initially designed by Google to help scale
containerized applications in the cloud. Kubernetes can manage the lifecycle of containers, creating and
destroying them depending on the needs of the application, as well as providing a host of other features.
Kubernetes has become one of the most discussed concepts in cloud-based application development,
and the rise of Kubernetes signals a shift in the way that applications are developed and deployed.

In general, Kubernetes is formed by a cluster of servers, called Nodes, each running Kubernetes agent
processes and communicating with one another. The Master Node contains a collection of processes
called the control plane that helps enact and maintain the desired state of the Kubernetes cluster, while
Worker Nodes are responsible for running the containers that form your applications and services.

CONTAINERS

Kubernetes is a container orchestration tool and, therefore, needs a container runtime installed to
work.

In practice, the default container runtime for Kubernetes is Docker, though other runtimes like rkt,
and LXD will also work. With the advent of the Container Runtime Interface (CRI), which hopes to
standardize the way Kubernetes interacts with containers, other options like containerd, cri-o, and
Frakti are also available. Examples throughout this guide will use Docker as the container runtime.

 · Containers are similar to virtual machines. They are light-weight isolated runtimes that share
 resources of the operating system without having to run a full operating system themselves.
 Containers consume few resources but contain a complete set of information needed to
 execute their contained application images such as files, environment variables, and libraries.

 · Containerization is a virtualization method to run distributed applications in containers using
 microservices. Containerizing an application requires a base image to create an instance of a
 container. Once an application’s image exists, you can push it to a centralized container registry
 that Kubernetes can use to deploy container instances in a cluster’s pods, which you can learn
 more about in Beginner’s Guide to Kubernetes: Objects.

https://www.docker.com/
https://coreos.com/rkt/
https://linuxcontainers.org/lxd/introduction/
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/container-runtime-interface.md
https://containerd.io/
https://cri-o.io/
https://github.com/kubernetes/frakti
https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-3-objects/#pods

05UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

 · Orchestration is the automated configuration, coordination, and management of computer
 systems, software, middleware, and services. It takes advantage of automated tasks to execute
 processes. For Kubernetes, container orchestration automates all the provisioning, deployment,
 and availability of containers; load balancing; resource allocation between containers; and health
 monitoring of the cluster.

KUBERNETES API

Kubernetes is built around a robust RESTful API. Every action taken in Kubernetes—be it inter-
component communication or user command—interacts in some fashion with the Kubernetes API. The
goal of the API is to help facilitate the desired state of the Kubernetes cluster.

The Kubernetes API is a “declarative model,” meaning that it focuses on the what, not the how. You tell
it what you want to accomplish, and it does it. This might involve creating or destroying resources, but
you don’t have to worry about those details. To create this desired state, you create objects, which are
normally represented by YAML files called manifests, and apply them through the command line with
the kubectl tool.

KUBECTL

kubectl is a command line tool used to interact with the Kubernetes cluster. It offers a host of features,
including the ability to create, stop, and delete resources; describe active resources; and auto scale
resources.

For more information on the types of commands and resources, you can use with kubectl, consult the
Kubernetes kubectl documentation.

https://kubernetes.io/docs/reference/kubectl/overview/

06UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Master, Nodes, and the Control Plane

At the highest level of Kubernetes, there exist two kinds of servers, a Master and a Node. These servers
can be Linodes, VMs, or physical servers. Together, these servers form a cluster controlled by the
services that make up the Control Plane.

For your Kuberentes cluster to maintain homeostasis for your application, it requires a central source
of communications and commands. Your Kubernetes Master, Nodes, and Control Plane are the
essential components that run and maintain your cluster. The Control Plane refers to the functions
that make decisions about cluster maintenance, whereas the Master is what you interact with on the
command-line interface to assess your cluster’s state.

KUBERNETES MASTER

The Kubernetes Master is normally a separate server responsible for maintaining the desired state of
the cluster. It does this by telling the Nodes how many instances of your application it should run and
where.

NODES

Kubernetes Nodes are worker servers that run your application(s). The user creates and determines the
number of Nodes. In addition to running your application, each Node runs two processes:

 1. kubelet receives descriptions of the desired state of a Pod from the
 API server, and ensures the Pod is healthy, and running on the Node.

 2. kube-proxy is a networking proxy that proxies the UDP, TCP, and SCTP
 networking of each Node, and provides load balancing. kube-proxy is
 only used to connect to Services.

https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-3-objects/#pods
https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-3-objects/#services

07UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

THE CONTROL PLANE

Together, kube-apiserver, kube-controller-manager, kube-scheduler, and etcd form what is known as
the control plane. The control plane is responsible for making decisions about the cluster and pushing it
toward the desired state. kube-apiserver, kube-controller-manager, and kube-scheduler are processes,
and etcd is a database; the Kubernetes Master runs all four.

 · kube-apiserver is the front end for the Kubernetes API server.

 · kube-controller-manager is a daemon that manages the Kubernetes
 control loop. For more on Controllers, see the Beginner’s Guide to
 Kubernetes: Controllers.

 · kube-scheduler is a function that looks for newly created Pods that
 have no Nodes, and assigns them a Node based on a host of requirements.
 For more information on kube-scheduler, consult the Kubernetes kube-scheduler
 documentation.

 · Etcd is a highly available key-value store that provides the backend
 database for Kubernetes. It stores and replicates the entirety of the
 Kubernetes cluster state. It’s written in Go and uses the Raft protocol,
 which means it maintains identical logs of state-changing commands
 across nodes and coordinates the order in which these state changes occur.

https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-4-controllers/
https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-4-controllers/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://raft.github.io/

08UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Objects

In Kubernetes, there are a number of objects that are abstractions of your Kubernetes system’s desired
state. These objects represent your application, its networking, and disk resources–all of which together
form your application.

In the Kubernetes API, four basic Kubernetes objects: Pods, Services, Volumes, and Namespaces
represent the abstractions that communicate what your cluster is doing. These objects describe what
containerized applications are running, the nodes they are running on, available resources, and more.

PODS

In Kubernetes, all containers exist within Pods. Pods are the smallest unit of the Kubernetes
architecture. You can view them as a kind of wrapper for your container. Each Pod gets its own IP
address with which it can interact with other Pods within the cluster.

Usually, a Pod contains only one container, but a Pod can contain multiple containers if those containers
need to share resources. If there is more than one container in a Pod, these containers can communicate
with one another via localhost.

Pods in Kubernetes are “mortal,” which means they are created and destroyed depending on the needs
of the application. For instance, you might have a web app backend that sees a spike in CPU usage. This
situation might cause the cluster to scale up the number of backend Pods from two to ten, in which case
eight new Pods would be created. Once the traffic subsides, the Pods might scale back to two, in which
case eight pods would be destroyed.

It is important to note that Pods get destroyed without respect to which Pod was created first. And,
while each Pod has its own IP address, this IP address will only be available for the lifecycle of the Pod.

09UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Here is an example of a Pod manifest:

Each manifest has four necessary parts:

 1. The version of the API in use
 2. The kind of resource you’d like to define
 3. Metadata about the resource
 4. Though not required by all objects, a spec, which describes the desired
 behavior of the resource, is necessary for most objects and controllers.

In the case of this example, the API in use is v1, and the kind is a Pod. The metadata field is used for
applying a name, labels, and annotations. Names differentiate resources, while labels, which will come
into play more when defining Services and Deployments, group like resources. Annotations are for
attaching arbitrary data to the resource.

The spec is where the desired state of the resource is defined. In this case, a Pod with a single Apache
container is desired, so the containers field is supplied with a name, ‘apache-container’, and an image,
the latest version of Apache. The image is pulled from Docker Hub, as that is the default container
registry for Kubernetes.

For more information on the type of fields you can supply in a Pod manifest, refer to the
Kubernetes Pod API documentation.

my-apache-pod.yaml

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: apache-pod
5 labels:
6 app: web
7 spec:
8 containers:
9 - name: apache-container
10 image: httpd

https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-3-objects/#services
https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-4-controllers/#deployments
https://hub.docker.com
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#pod-v1-core

10UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

SERVICES

Services group identical Pods together to provide a consistent means of accessing them. For instance,
you might have three Pods that are all serving a website, and all of those Pods need to be accessible on
port 80. A Service can ensure that all of the Pods are accessible at that port, and can load balance traffic
between those Pods.

Additionally, a Service can allow your application to be accessible from the internet. Each Service gets
an IP address and a corresponding local DNS entry. Additionally, Services exist across Nodes. If you have
two replica Pods on one Node and an additional replica Pod on another Node, the Service can include
all three Pods. There are four types of Services:

 · ClusterIP: Exposes the Service internally to the cluster. This is the default setting
 for a Service.

 · NodePort: Exposes the Service to the internet from the IP address of the Node
 at the specified port number. You can only use ports in the 30000-32767 range.

 · LoadBalancer: This will create a load balancer assigned to a fixed IP address
 in the cloud, so long as the cloud provider supports it. In the case of Linode,
 this is the responsibility of the Linode Cloud Controller Manager, which will
 create a NodeBalancer for the cluster. This is the best way to expose your
 cluster to the internet.

 · ExternalName: Maps the service to a DNS name by returning a CNAME
 record redirect. ExternalName is good for directing traffic to outside
 resources, such as a database that is hosted on another cloud.

https://github.com/linode/linode-cloud-controller-manager

11UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Here is an example of a Service manifest that uses the v1 API:

Like the Pod example in the previous section, this manifest has a name and a label. Unlike the Pod
example, this spec uses the ports field to define the exposed port on the container (port), and the target
port on the Pod (targetPort). The type NodePort unlocks the use of nodePort field, which allows traffic
on the host Node at that port. Lastly, the selector field targets only the Pods assigned the app: web
label.

VOLUMES

A Volume in Kubernetes is a way to share file storage between containers in a Pod. Kubernetes Volumes
differ from Docker volumes because they exist inside the Pod rather than inside the container. When
a container gets restarted, the Volume persists. Note, however, that these Volumes are still tied to the
lifecycle of the Pod, so if the Pod gets destroyed, the Volume gets destroyed with it.

Linode also offers a Container Storage Interface (CSI) driver that allows the cluster to persist data on a
Block Storage volume.

my-apache-service.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: apache-service
5 labels:
6 app: web
7 spec:
8 type: NodePort
9 ports:
10 - ports: 80
11 targetPort: 80
12 nodePort: 30020
13 selector:
14 app: web

https://github.com/linode/linode-blockstorage-csi-driver

12UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Here is an example of how to create and use a Volume by creating a Pod manifest:

A Volume has two unique aspects to its definition. In this example, the first aspect is the volumes block
that defines the type of Volume you want to create, which in this case is a simple empty directory
(emptyDir). The second aspect is the volumeMounts field within the container’s spec. This field is given
the name of the Volume you are creating and a mount path within the container.

There are a number of different Volume types you could create in addition to emptyDir depending on
your cloud host.

NAMESPACES

Namespaces are virtual clusters that exist within the Kubernetes cluster that help to group and organize
objects. Every cluster has at least three namespaces: default, kube-system, and kube-public. When
interacting with the cluster it is important to know which Namespace the object you are looking for is in
as many commands will default to only showing you what exists in the default namespace. Resources
created without an explicit namespace will be added to the default namespace.

my-apache-pod-with-volume.yaml

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: apache-with-volume
5 spec:
6 volumes:
7 - name: apache-storage-volume
8 emptyDir: {}

9 containers:
10 - name: apache-container
11 image: httpd
12 volumeMounts:
13 - name: apache-storage-volume
14 mountPath: /data/apache-data

my-namespace.yaml

1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 name: my-app

13UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

my-apache-pod-with-namespace.yaml

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: apache-pod
5 labels:
6 app: web
7 namespace: my-app
8 spec:
9 containers:
10 - name: apache-container
11 image: httpd

DEPLOYMENTS

A Deployment can keep a defined number of replica Pods up and running. A Deployment can also
update those Pods to resemble the desired state by means of rolling updates. For example, if you want
to update a container image to a newer version, you would create a Deployment. The controller would
update the container images one by one until the desired state is achieved, ensuring that there is no
downtime when updating or altering your Pods.

Here is an example of a Deployment:

Namespaces consist of alphanumeric characters, dashes (-), and periods (.).

A Controller is a control loop that continuously watches the Kubernetes API and tries to manage the
desired state of certain aspects of the cluster. Here are short references of the most popular controllers.

14UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

In this example, the number of replica Pods is set to five, meaning the Deployment will attempt to
maintain five of a certain Pod at any given time. A Deployment chooses which Pods to include by use of
the selector field. In this example, the selector mode is matchLabels, which instructs the Deployment to
look for Pods defined with the app: web label.

my-apache-deployment.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: apache-deployment
5 labels:
6 app: web
7 spec:
8 replicas: 5
9 selector:
10 matchLabels:
11 app: web
12 template:
13 metadata:
14 labels:
15 app: web
16 spec:
17 containers:
18 - name: apache-container
19 image: httpd:2.4.35

As you will see, the only noticeable difference between a Deployment’s manifest and that
of a ReplicaSet is the kind.

https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-4-controllers/#replicasets

15UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Controllers

REPLICASETS

Note: Kubernetes now recommends the use of Deployments instead of ReplicaSets. Deployments provide
declarative updates to Pods, among other features, that allow you to define your application in the spec
section. In this way, ReplicaSets have essentially become deprecated.

Kubernetes allows an application to scale horizontally. A ReplicaSet is one of the controllers responsible
for keeping a given number of replica Pods running. If one Pod goes down in a ReplicaSet, another
gets created to replace it. In this way, Kubernetes is self-healing. However, for most use cases, it is
recommended to use a Deployment instead of a ReplicaSet.

There are three important considerations regarding this ReplicaSet. First, the apiVersion (apps/v1)
differs from the previous examples, which were apiVersion: v, because ReplicaSets do not exist in the v1
core. They instead reside in the apps group of v1. Also, note the replicas field and the selector field. The
replicas field defines how many replica Pods you want to be running at any given time. The selector field
defines which Pods, matched by their label, will be controlled by the ReplicaSet.

my-apache-replicaset.yaml

1 apiVersion: apps/v1
2 kind: ReplicaSet
3 metadata:
4 name: apache-replicaset
5 labels:
6 app: web
7 spec:
8 replicas: 5
9 selector:
10 matchLabels:
11 app: web
12 template:
13 metadata:
14 labels:
15 app: web
16 spec:
17 containers:
18 - name: apache-container
19 image: httpd

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/#when-to-use-a-replicaset
https://www.linode.com/docs/kubernetes/beginners-guide-to-kubernetes-part-4-controllers/#deployments

16UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

JOBS

A Job is a controller that manages a Pod created for a single or set of tasks. This is handy if you need to
create a Pod that performs a single function or calculates a value. The deletion of the Job will delete the
Pod.

Here is an example of a Job that simply prints “Hello World!” and ends:

my-job.yaml

1 apiVersion: batch/v1
2 kind: Job
3 metadata:
4 name: hello-world
5 spec:
6 template:
7 metadata:
8 name: hello-world
9 spec:
10 containers:
11 - name: output
12 image: debian
13 command:
14 - “bin/bash”
15 - “-c”
16 - “echo ‘Hello World!’”
17 restartPolicy: Never

17UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Networking

Networking in Kubernetes makes it simple to port existing apps from VMs to containers, and
subsequently, Pods. The basic requirements of the Kubernetes networking model are:

 · Pods can communicate with each other across Nodes without the use of NAT.

 · Agents on a Node, like kubelet, can communicate with all of a Node’s Pods.

 · In the case of Linux, Pods in a Node’s host network can communicate to all
 other Pods without NAT.

Though the rules of the Kubernetes networking model are simple, the implementation of those rules is
an advanced topic. Because Kubernetes does not come with its own implementation, it is up to the user
to provide a networking model.

Two of the most popular options are Flannel and Calico.

 · Flannel is a networking overlay that meets the functionality of the Kubernetes
 networking model by supplying a layer 3 network fabric and is relatively easy
 to set up.

 · Calico enables networking and networking policy through the NetworkPolicy API
 to provide simple virtual networking.

1.

2.

3.

https://whatismyipaddress.com/nat
https://github.com/coreos/flannel#flannel
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

18UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

Over the past decade, developers have used containers to both deploy and maintain applications
more efficiently. As the use of container engines like Docker continued to grow, it was only a matter of
time before developers would need to simplify this process even further. Kubernetes is the result of
several years of innovation and advancing best practices to build an orchestrator that streamlines the
complexity of containers.

Kubernetes is rapidly evolving. The true impact of Kubernetes as an open source project increases
as managed Kubernetes services become more affordable, widely available, and as more third-party
integrations give developers the ability to customize their Kubernetes experiences. As the ecosystem
continues to advance, developers will expand their use cases for production workloads. Kubernetes is
here to stay, and Kubernetes skills will become even more in-demand.

With the emergence of Kubernetes as a widely used tool in cloud computing, it’s critical for developers
to find sustainable and affordable managed Kubernetes services. Linode Kubernetes Engine (LKE)
is designed to work for developers who are ready to use Kubernetes for production workloads with
efficient and affordable resources, as well as developers who are simply exploring how Kubernetes will
work for them.

Our Take

19UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

A complex management tool, early in its development, Kubernetes often made workloads more
complicated to deploy and manage instead of removing developers’ burdens. Kubernetes solutions
were known to be clunky and inefficient. However, as the open source community worked to build a
more stable and reliable tool, the same occurred for managed K8s, including LKE.

On Linode, developers gain access to powerful infrastructure without a premium price tag and minimize
time spent on deployment by setting up a Kubernetes cluster and downloading its kubeconfig file in less
than ten clicks.

Setting up your first cluster is just the beginning. Take a look at the following resources to master the
basics and advance your Kubernetes knowledge.

 · Ready to deploy your first cluster on Linode? Follow our guide to get started
 with Linode Kubernetes Engine.

 · Find a variety of Kubernetes courses on Linux Academy with topics ranging
 from basic cluster deployment to advanced configuration and security.

 · Become a Certified Kubernetes Administrator or Certified Kubernetes
 Application Developer through the Cloud Native Computing Foundation’s
 online exams.

As Kubernetes continues to grow, so does the variety and availability of add-ons to incorporate new
cluster administration features and customize networking, container visualization, and more. Check out
the full list of Addons on Kubernetes.io.

Next Steps

https://www.linode.com/docs/kubernetes/deploy-and-manage-a-cluster-with-linode-kubernetes-engine-a-tutorial/
https://linuxacademy.com/
https://www.cncf.io/certification/cka/
https://www.cncf.io/certification/ckad/
https://www.cncf.io/certification/ckad/
https://kubernetes.io/docs/concepts/cluster-administration/addons/#visualization-amp-control

20UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

About Linode

Our mission is to accelerate innovation by making cloud
computing simple, affordable, and accessible to all.

Linode accelerates innovation by making cloud computing simple, accessible, and affordable to
all. Founded in 2003, Linode helped pioneer the cloud computing industry and is today the largest
independent open cloud provider in the world. Headquartered in Philadelphia’s Old City, the company
empowers more than a million developers, startups, and businesses across its global
network of 11 data centers.

21UNDERSTANDING KUBERNETES: A GUIDE TO MODERNIZING YOUR CLOUD INFRASTRUCTURE

The World’s Largest
Independent Open Cloud

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072
249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

https://linode.com
http://linode.com

