lllllllllllllll

fluentd



Contents
Overview of Fluentd

Quickstart Guide
Stepl: Installing Fluentd . . . . . . . . . .
Step2: Use Cases . . . . v v v vt e e e e
Step3d: Learn More . . . . . . . . . . e

Before Installing Fluentd
Set Up NTP . . . . e
Increase Max # of File Descriptors . . . . . . . . . . . .

Optimize Network Kernel Parameters . . . . . . . .. . . ... . ... . .. ...

Installing Fluentd Using rpm Package
What is td-agent? . . . . . .
Step0: Before Installation . . . . . . . . . . .
Stepl: Install from rpm Repository . . . . . . . . . . . L
Step2: Launch Daemon . . . . . . . .. ..o
Step3: Post Sample Logs via HTTP . . . . . . . . ... o
Next Steps . . . . o o e

Installing Fluentd Using deb Package

What is td-agent? . . . . . .. e
Step0: Before Installation . . . . . . . . . . . L

GPG key . . . o e
Stepl (Ubuntu): Install from Apt Repository . . . . . . . . . ... ..
Step2: Launch Daemon . . . . . . . . . . .
Step3: Post Sample Logs via HT'TP . . . . . . . .. .. o
Next Steps . . . o . o e e

Installing Fluentd Using Ruby Gem
Step0: Before Installation . . . . . . . . . . . .
Stepl: Install Ruby interpreter . . . . . . . . . . . . . L
Step2: Install Fluentd gem . . . . . . . . . .
Step3: Run . . . . . e
Next Steps . . . . o o e e

21

23
23
24
24

24
24
25
25

25
25
25
26
26
26
26

27
27
27
27
27
28
28
28



Installing Fluentd Using Chef
Step0: Before Installation . . . . . . . . . . ..
Stepl: Import Recipe . . . . . . . . . L
Step2: Run chef-client . . . . . . . . . . .
Next Steps . . . o o o o e

Installing Fluentd using Homebrew (MacOS X)
What is td-agent? . . . . . .
Stepl: Install Homebrew . . . . . . . . . . . 0L
Step2: Install td-agent . . . . . . . . L
Step3: Post Sample Logs via HTTP . . . . . . . . . . . . .
Next Steps . . . o o o

Installing Fluentd from Source
Stepl: Install Ruby interpreter . . . . . . . . . . . . e
Step2: Fetch Source Code . . . . . . . . . . e e
Step3: Build and Install . . . . . . . . . . ..
Stepd: Run . . . . . L e
Next Steps . . . . o o o e

Install Fluentd (td-agent) on Heroku
Create Your App . . . . . . . o e
Test . . o o e

Installing Fluentd (td-agent) on Elastic Beanstalk

Fluentd Users
Backplane, Inc. . . . . . . oL
ContextLogic, Inc. . . . . . . . . e
CyberAgent, Inc. . . . . . . . . e
DeNA Co., Ltd. . . . . .
Drecom Co., Ltd. . . . . . . . . o e
GREE, Inc. . . . . . . e
LINE Corporation. . . . . . . . . o it ittt e e e e
Livesense, Inc. . . . . . . . L e
NAMCO BANDAI Studios Inc. . . . . . . . o000
Nintendo, Inc. . . . . . . . L L e e
PPLive, Inc. . . . . . . o e e e e
SlideShare, Inc. . . . . . . . . . L e

30
30
30
30
30

30
31
31
31
32
32

32
32
32
33
33
33

33
34
34

34

36



Uken Games . . . . . . . o 38

Viki, Inc. . . . o 38
FAQ 39
Fluentd Core . . . . . . . . e 39
Fluentd is written in Ruby. Isit slow? . . . . . . . .. .. ... . . . L 39
Does Fluentd run on Windows? . . . . . . . . .. . . L e 39
How can I collect logs from a Windows Machine? . . . . . . .. . . ... ... ... ...... 39
Does Fluentd have Ul or storage? . . . . . . . . . . . .. e 39
What is Fluentd’s ‘tag’? . . . . . . . . . e 39
How can I estimate Fluentd’s resource usage? . . . . . . . . . . . . v v 40
How is Fluentd’s performance? . . . . . . . . . . . . .. 40
Treasure Agent(td-agnt) . . . . . . . .. 40
What are the differences between td-agent and Fluentd? . . . . . . . .. ... ... ... ... 40
Should T use td-agent or the Fluentd gem? . . . . . . . . ... ... ... ... . ... 41
Fluentd compared to other projects . . . . . . . . . . . . .. 41
What’s the difference between Logstash and Fluentd? . . . . . .. .. ... ... ... ... 41
What’s the difference between Scribe and Fluentd? . . . . . . . ... ... ... ... ... 42
What’s the difference between Kafka and Fluentd? . . . . . . . ... ... ... ... ... ... 42
What’s the difference between Flume and Fluentd? . . . . . . ... .. ... .. ... .. ... 42
What’s the difference between Splunk and Fluentd? . . . . ... .. ... ... ... ..... 42
Operations . . . . . . . . e e e 42
I have a weird timestamp value, what happened? . . . . . . .. . ... ... ... ... .. .. 42

I installed td-agent and want to add custom plugins. How doI doit?. . . . . ... ... ... 42
How can I match (send) an event to multiple outputs? . . . . . ... ... ... ... ... .. 43
Plugin Development . . . . . . . . . . . e 43
How do I develop a custom plugin? . . . . . . . . . .. ... 43
Data Import from Ruby Applications 43
Prerequisites . . . . . . L e 43
Installing Fluentd . . . . . . . . . . . o 43
Modifying the Config File . . . . . . . . . .. e 44
Using fluent-logger-ruby . . . . . . . .. oL 44
Production Deployments . . . . . . . . . . . L e e 44
Output Plugins . . . . . . . . . e 44
High-Availablability Configurations of Fluentd . . . . . . . . .. ... ... ... ... ... 45
Monitoring . . . . . ..o 45



Data Import from Python Applications

Prerequisites . . . . . . oL
Installing Fluentd . . . . . . . . . . e
Modifying the Config File . . . . . . . . . . o
Using fluent-logger-python . . . . . . . . . .. L
Production Deployments . . . . . . . . . . L

Output Plugins . . . . . . . . . e

High-Availablability Configurations of Fluentd . . . . . . . . .. ... ... ... ... .....

Monitoring . . . . . . .. e e e e e

Data Import from PHP Applications

Prerequisites . . . . . . L e
Installing Fluentd . . . . . . . . . . . . e
Modifying the Config File . . . . . . . . . . . e
Using fluent-logger-php . . . . . . . . oL e
Production Deployments . . . . . . . . . .. L e

Output Plugins . . . . . . . . . e

High-Availablability Configurations of Fluentd . . . . . . . ... ... ... ... .. ......

Monitoring . . . . . . L

Data Import from Perl Applications

Prerequisites . . . . . . e e
Installing Fluentd . . . . . . . . o oL e
Modifying the Config File . . . . . . . . . o .
Using Fluent::Logger . . . . . . . . . . L o e e
Production Deployments . . . . . . . . . . . e e

Output Plugins . . . . . . . . . e

High-Availablability Configurations of Fluentd . . . . . . . . ... .. ... ... ... .. ...

Monitoring . . . . . L e

Data Import from Node.js Applications
Prerequisites . . . . . . L e e
Installing Fluentd . . . . . . . . . . 0 L e
Modifying the Config File . . . . . . . . . . o
Using fluent-logger-node . . . . . . . . . L
Obtaining the Most Recent Version . . . . . . . . . .. ... . L o
A Sample Application . . . . . ... L

Production Deployments . . . . . . . . . . L e

45
45
45
45
46
46
46
46
47

47
47
47
47
48
48
48
48
49

49
49
49
49
50
a0
50
50
51



Output Plugins . . . . . . . . . . . e
High-Availablability Configurations of Fluentd . . . . . . . . . ... ... ... ... ......

Monitoring . . . . . . L e e

Data Import from Java Applications

Prerequisites . . . . . .
Installing Fluentd . . . . . . . . . . . e e
Modifying the Config File . . . . . . . . . o e
Using fluent-logger-java . . . . . . . . . L e
Production Deployments . . . . . . . . . . . L e e

Output Plugins . . . . . . . . . . e

High-Availablability Configurations of Fluentd . . . . . . . . . ... ... ... ... .. ....

Monitoring . . . . . . L e e e

Data Import from Scala Applications

Prerequisites . . . . . . L e
Installing Fluentd . . . . . . . . . . L e
Modifying the Config File . . . . . . . . . . . e
Using fluent-logger-scala . . . . . . . . . . L L
Production Deployments . . . . . . . . . . . L e

Output Plugins . . . . . . . . . . e

High-Availablability Configurations of Fluentd . . . . . . . . .. ... ... .. .. .. .....

Monitoring . . . . . . L e e

Free Alternative to Splunk Using Fluentd

Prerequisites . . . . . . L e

Java for Elasticsearch . . . . . . . . L
Set Up Elasticsearch . . . . . . . . . . . e
Setup Kibana . . . . . . . . . L
Setup Fluentd (td-agent) . . . . . . . . ...
Setup rsyslogd . . . . L L e
Store and Search Event Logs . . . . . . . . . . . e
Demo Environment . . . . . . . . oL e
Conclusion . . . . . . o e

Learn More . . . . . . e

53
93
93
54
o4
%)
55
%)
%)

55
96
96
56
56
o7
o7
57
58



How To Filter Or Modify Data Inside Fluentd (Apache as an Example)
Scenario: Filtering Data by the Value of a Field . . . . . . . . . .. .. ... ... ... ... ....
Solution: Use fluent-plugin-grep . . . . . . . . . . . L
Scenario: Adding a New Field (such as hostname) . . . . ... ... ... ... .. .........

Solution: Use fluent-plugin-record-modifier . . . . . . . . . . ... . ... ... ... ...

Splunk-like Grep-and-Alert-Email System Using Fluentd
Installing the Needed Plugins . . . . . . . . . . 0. . o
Configuration . . . . . . . . . L e e
Configuration File: Soup to Nuts . . . . . . . . . .. .
What the Configuration File Does . . . . . . . . . . . . . ... .. .
Testing . . . . . . e
What’s Next? . . . . . o o e

Cloud Big Data Analytics with Treasure Data
Background . . . . .. e e

Architecture . . . . . . .

HTTP Input . . . . . o e
Treasure Data Qutput . . . . . . . . . . .

Store Apache Logs into Amazon S3
Background . . . . . ..
Mechanism . . . . . . .. e
Install . . . . e
Configuration . . . . . . . . . oL e
Tail Input . . . . . L
Amazon S3 Output . . . . . . . e

62
62
62
63
63

64
64
64
64
65
66
66

66
66
67
67
67
68
68
68
68
69
69



Store Apache Logs into MongoDB
Background . . . . . L
Mechanism . . . . . . oL e e e
Install . . . . e
Configuration . . . . . . . . oL
Tail Input . . . . . L
MongoDB Output . . . . . . . . e

Fluentd + HDF'S: Instant Big Data Collection

Background . . . . .. e e e
Architecture . . . . . . . L L
Install . . . . L
Fluentd Configuration . . . . . . . . . . . e

HTTP Input . . . . . o e

WebHDFS Output . . . . . . .. e
HDFS Configuration . . . . . . . . . .. e
Test . . o e e
Conclusion . . . . . . . e

Learn More . . . . . . . . s

Store Apache Logs into Riak
Prerequisites . . . . . . Lo
Installing the Fluentd Riak Output Plugin . . . . . . . .. ... ... ... ... ... . ...
Rubygems Users . . . . . . . o o i e e
td-agent Users . . . . . . . . L e
Configuring Fluentd . . . . . . . . . . e
Testing . . . . . e

Learn More . . . . . . . e

Collecting Log Data from Windows
Prerequisites . . . . . . L e
SEtUD .« . o o
Set up a Linux server with rsyslogd and Fluentd . . . . . . ... ... ... ... ......
Set up nxlog on Windows . . . . . . . . . .. e

Test . . o e e e

72
72
72
73
73
73
74
74
(0]
(0]

75
(0]
(0]
76
76
76
76
7
7
7
7

78
78
78
78
79
79
79
80



Next Step . . . . o o

Learn More . . . . . . . L s

Cloud Data Logger by Raspberry Pi
Install Raspbian . . . . . . . . . L
Install Fluentd . . . . . . . . . e
Configure and Launch Fluentd . . . . . . . ... . .
Upload Test . . . . . . o o e e e
Conclusion . . . . . . . e e e

Learn More . . . . . . . . s

Collecting GlusterF'S Logs with Fluentd
Background . . . . .. e e
Setting up Fluentd on GlusterFS Nodes . . . . . . . . . . . . . . . . .. .. .. .. .. ... ...
Step 1: Installing Fluentd . . . . . . . . . . . .
Step 2: Making GlusterFS Log Files Readable by Fluentd . . . . . . .. .. ... ... ....
Step 3: Setting Up the Aggregator Fluentd Server . . . . . .. ... ... ... ........
Acknowledgement . . . . . . ...

Learn More . . . . . . . e e

Configuration File
OVErVIEW . . . . . e e
Config File Location . . . . . . . . . . e

List of Directives . . . . . . . . .

(3) Re-use your config: the “include” directive . . . . . . . . . . .. .. L
Supported Data Types for Values . . . . . . . . . . ..
V1 Format . . . . . . .
Multi line support for array and hash values . . . . . . . . ... . ... ... L.
"foo" is interpreted as foo, not "foo" . . . . . ... L e
Allow # in string value . . . . . . . . . ..
Embedded Ruby code . . . . . . . . . L

\ is escape character . . . . . . . . .. L

82
83
83
84
84
85
85

85
85
85
85
86
87
87
87



Logging of Fluentd 93

Log Level . . . o . o o e 93
Global Logs . . . . . . . . e 93
Increase Verbosity Level . . . . . . . . . . oL 93
Decrease Verbosity Level . . . . . . . . . . o e 94

Per Plugin Log (Fluentd v0.10.43 and above) . . . . . . . . . . . . . ... ... ... ... ... 94
Suppress repeated stacktrace . . . . .. ..o 94
Output to log file . . . . . . . . e 95
Capture Fluentd logs . . . . . . . . . o . e 95
Monitoring Fluentd 96
Monitoring Agent . . . . . . . ... 96
Process Monitoring . . . . . . . . ... 96
Port Monitoring . . . . . . . . L e e 97
Debug Port . . . . . . e 97
Fluentd’s Signal Handling 97
Process Model . . . . . . . e 97
Signals . . . . . oL e e 97
SIGINT or SIGTERM . . . . . . . e e e e s 97
SIGUSRI . . . . e 97
SIGHUP . . . . o 98
Fluentd High Availability Configuration 98
Message Delivery Semantics . . . . . . . . . .. L L 98
Network Topology . . . . . . .« . e 98
Log Forwarder Configuration . . . . . . . . . . . . 98
Log Aggregator Configuration . . . . . . . . . . . . L e 100
Failure Case Scenarios . . . . . . . . . . . . L 101
Forwarder Failure . . . . . . . . . . . e 101
Aggregator Failure . . . . . . . ... 101

Trouble Shooting . . . . . . . . . o e 101
“no nodes are available” . . . . ..o Lo 101

Failure Scenarios 101
Apps Cannot Post Records to Forwarder . . . . . . . . . . ... .. 102
Forwarder or Aggregator Fluentd Goes Down . . . . . . . . . . ... ... .. 102
Storage Destination Goes Down . . . . . . . . . . .. 102

10



Performance Tuning

Check top command . . . . . .. ...

Multi Process . . . . . . . .

Plugin Management

“SpToption L. L
Add a Plugin Via /etc/fluent/plugin . . . . . ... ... . L.
If Using td-agent, Use /etc/td-agent/plugin . . . . . . ... ... ...

“—gemfile” option . . . . . . ...

Troubleshooting Fluentd

Look at Logs . . . . . . . . . e
Turn on Verbose Logging . . . . . . .. .. ... .. ..

Input Plugin Overview

OVEIVIEW . . . o o o e
List of Input Plugins . . . . . . .. . .. . o
Other Input Plugins . . . . . . . . . ... .

forward Input Plugin

Example Configuration . . . . . . . . ... ... L o
Parameters . . . . . . ... L

Protocol . . . . . . e e

Secure Forward Input

Example Configurations . . . . . . . .. .. ..o oo
Minimalist Configuration . . . . .. ... ... ... ... ... ..
Check username/password from Clients . . . . .. ... .. ... ...
Deny Unknown Source IP/hosts . . . . .. .. ... ... .. ... ..

Parameters . . . . . . . L

Buffer Parameters . . . . . . . ...
buffer_type . . . . . .
buffer__queue_ limit, buffer_ chunk limit . . . .. ... ... ... ...

flush _interval . . . . . . . . . . . ...

102
102
102

103
103
103
103
103
103
103

104
104
104
104
104
105

105
105
105
105

105
105
106
106



retry_wait, retry_limit and max_retry_wait . . . . . .. ... oo

num_threads . ... ... ...

http Input Plugin

Example Configuration . . . . .
Parameters . . ... ... ...

time query parameter . . . . .

Unix Domain Socket Input Plugin

Example Configuration . . . . .

Parameters . . .. .. .. ...

tail Input Plugin

Example Configuration . . . . .
How it Works . . . . . ... ..

Parameters . ... ... ....

pos_ file (highly recommended)

exec Input Plugin

Example Configuration . . . . .

Parameters . . .. .. ... ..

syslog Input Plugin

Example Configuration . . . . .

Parameters . ... .. ... ..

scribe Input Plugin

Example Configuration . . . . .

Parameters . . .. .. ... ..

Multiprocess Input Plugin

Install . . ... ... ... ...
Example Configuration . . . . .

Parameters . . ... ... ...

Other Input Plugins

12

110
110
110
111

111
111
111

112
112
112
112
116

116
117
117

118
118
118

120
120
120
120

121
121
122
122

123



Output Plugin Overview
Overview . . . . . . . .. ...
secondary output . . . . .. ... .. ... ..
List of Non-Buffered Output Plugins . . . . . . . .
List of Buffered Output Plugins . . . . . . ... ..
List of Time Sliced Output Plugins . . . . . . . ..
Other Plugins . . . . . . .. ... .. ... ...

file Output Plugin
Example Configuration. . . . . .. ... ... ...
Parameters . . . . .. .. ... L.
type (required) . . ... ... ... ...
path (required) . . ... ... ... ... ...
time slice format . . . ... .. ... ....
time_ slice wait . . . . ... ... ... ...

time format . . .. .. ... ... .. ....

COMPIESS . « v v v v v v e et e e e e e e
Buffer Parameters . . . . .. ... ... ... ...
buffer type . . .. .. ... .. ...,
buffer queue_ limit, buffer chunk limit . . .
flush _interval . . . . . . ... ... ... ...
retry_wait, retry_ limit and max_ retry_ wait

num_threads . . ... ... ... ... ...,

forward Output Plugin
Example Configuration. . . . . .. ... ... ...
Parameters . . . . . ... ... oL
type (required) . . . ... ... ...
<server> (at least one is required) . . . . ..
<secondary> (optional) . . .. .. ... ...
send_ timeout . . . . .. ... ... ... ...
recover wait . . . . .. ... ...
heartbeat_type . . . . . . ... ... ... ..
heartbeat interval . . . . . . ... ... ...
phi_failure_detector . . . . .. ... ... ..

phi_threshold . . . . . .. .. ... ... ...

13

123
123
123
123
123
124
124

124
124
124
124
124
125
125
125
125
125
125
125
125
126
126
126



hard_ timeout

standby

Troubleshooting

“no nodes are available”

Secure Forward Output

Example Configurations

Minimalist Configuration

Multiple Forward Destinations over SSL

Parameters

Buffer Parameters

buffer_ type

buffer queue_ limit, buffer_ chunk_limit

flush_interval

retry_wait, retry_ limit and max_ retry_ wait

num_ threads

exec Output Plugin

Example Configuration

Parameters

type (required)

command (required)

format

time_ key

time format

Buffer Parameters

buffer_ type

buffer _queue_ limit, buffer_ chunk_ limit

flush interval

retry_ wait, retry_ limit and max_ retry_ wait

num_ threads

exec__filter Output Plugin

Example Configuration

Parameters

type (required)

command (required)

129
129
129
130
131
131
131
132
132
132
132

132
132
133
133
133
133
133
133
133
133
133
134
134
134
134



out format . . . . . . L 135

tag Key . . .o 135
time_key . . . .o e e 136
time format . . . . . . . 136
Buffer Parameters . . . . . . . .. 136
buffer _type . . . . . L 136
buffer _queue_limit, buffer _chunk limit . . . . . . .. ... ... ... ... ... ....... 136
flush interval . . . . . . . . 136
retry_ wait, retry_ limit and max_retry_wait . . . . ... ... L oL 136
num_threads . . . . . . . 136
copy Output Plugin 136
Example Configuration . . . . . . . . . . . . 137
Parameters . . . . . . . e 137
type (required) . . ... 137
dEEP_CODY -+« v v v e i e e 138
<store> (at least one required) . . . . . . ... 138
GeolP Output Plugin 138
Prerequisites . . . . . . L e 138
Install . . . . . e 138
Example Configuration . . . . . . . . . . . L 138
Parameters . . . . . . . L e e 139
geoip_lookup_key (required) . . . . . . . .. 139
remove_tag_prefix / add_tag prefix (requires one or the other) . . . . . . . ... ... ... 139
enable_key *** (requires at least one) . . . . . ... Lo 139
include_tag key . . . . . . e 139

tag Key . . .o e 139
Buffer Parameters . . . . . . . L 140
buffer _type . . . . . e 140
buffer _queue_limit, buffer _chunk limit . . . . . . ... .. ... ... ... ... .. ... 140
flush_interval . . . . . . . . 140

Use Cases . . . . v v v v i e e 140
Further Reading . . . . . . . . . . e 141

15



roundrobin Output Plugin

Example Configuration

Parameters

type (required)

<store> (required at least one)

stdout Output Plugin

Example Configuration

Parameters

null Output Plugin

Example Configuration

Parameters

type (required)

Amazon S3 Output Plugin

Installation

Example Configuration

Parameters

type (required)

aws__key_id (required/optional)

aws_sec_ key (required/optional)

$3_bucket (required)

buffer path (required)

s3__endpoint

time slice format

time_slice wait

time format

store as

proxy_ uri

use_ ssl

Buffer Parameters

buffer_ type

buffer queue_ limit, buffer_ chunk limit

flush _interval

retry_ wait, retry_ limit and max_ retry_ wait

16

141
141
141
141
141

142
142
142

142
142
142
142



num_threads . . . . . . . e 146

Further Reading . . . . . . . . . L e e 146
MongoDB Output Plugin 146
Why Fluentd with MongoDB? . . . . . . . . . . e 146
Install . . . . o 146
Example Configuration . . . . . . . . . . . L 147
Parameters . . . . . . L 147
type (required) . . . ... 147

host (required) . . . . . . . L 147

port (required) . . . ... 147
database (required) . . . . . ... 147
collection (required, if not tag_mapped) . . . . . . . ..o Lo 147
capped . . .. 148

USET o v v v v e e e e e e e e e e e e e e e e e e e e e e 148
password . ... L. 148

tag mapped . ... e e 148
Buffer Parameters . . . . . . .. 148
buffer_type . . . . . . e 148
buffer queue_ limit, buffer chunk limit. . . .. .. ... ... .. ... ... ......... 149
flush interval . . . . . . . . e 149
retry_wait, retry_ limit and max_retry_wait . . . . . .. ..o Lo oo 149
num_threads . . . . . . . . L 149
Further Reading . . . . . . . . . . L e 149
MongoDB ReplicaSet Output Plugin 149
Why Fluentd with MongoDB? . . . . . . . . . . 149
Install . . . . o e e 150
Example Configuration . . . . . . . . . . . L e 150
Parameters . . . . . . . L e e 150
type (required) . . . ..o 150
nodes (required) . . . . ... e 150
database (required) . . . . . ... 150
collection (required if not tag_mapped) . . . . . . . ... o L o 150
capped . . .. 150
capped_Size . . . . .. L 150

USET o v v v v e e e e e e e e e e e e e e e e 151

17



PASSWOrd . . . . e e e e 151

tag mapped . ... o. L. 151
NAMIE . . v v v v e e e e e e e e e e e e e e e e e e 151

read ... L 151
refresh mode . . . . . . . L 151
refresh interval . . . . . . . . L 151
nUM__TetTIeS . . . . . . o o e e e e e e e e e e e e e e e e 151
Buffer Parameters . . . . . . . . 152
buffer_type . . . . . . 152
buffer queue_ limit, buffer_chunk limit . . . .. .. ... ... ... .. ... ......... 152

flush interval . . . . . . . . e 152
retry_wait, retry_ limit and max_retry_wait . . . . . .. ..o L oo 152
num_threads . . . . . . . . L 152
Further Readings . . . . . . . .« . . e 152
rewrite_ tag_ filter Output Plugin 152
How it works . . . . . . . e 153
Install . . . . o e e 153
Example Configuration . . . . . . . . . . . L 153
Parameters . . . . . . . L e 154
rewriteruleN (required at least one) . . . . . . . ... Lo Lo L 154
capitalize regex_ backreference . . . . . . . . .. ... L 154
hostname command . . . . . . ... L 154
Placeholders . . . . . . . . . o L 154
USE CASES . . v v v v o e e e e 154
HDFS (WebHDFS) Output Plugin 158
Install . . . . o e e 158
HDFS Configuration . . . . . . . . . .. e 158
Example Configuration . . . . . . . . . . . L 159
Parameters . . . . . . e e 159
type (required) . . ... 159

host (required) . . . . . . . L 159

port (required) . . . . . ... 159
path (required) . . . . . . . .. 159
Buffer Parameters . . . . . . . . .. L 159
buffer_type . . . . . . 159

18



buffer _queue_ limit, buffer__chunk limit . . . . . . .. .. ... .. ... ... .. ... .. 160

flush interval . . . . . . . . 160

retry_ wait, retry_ limit and max_retry_wait . . . . ... ... Lo Lo 160
num_threads . . . . . . . 160

Further Reading . . . . . . . . . . . e 160
Other Output Plugins 160
Buffer Plugin Overview 160
Buffer Plugin Overview . . . . . . . . . . e 161
Buffer Structure . . . . . . L 161
Time Sliced Plugin Overview . . . . . . . . .. . e 162
Notes . . . o e e e 162
List of Buffer Plugins . . . . . . . . . . . e 162
memory Buffer Plugin 162
Example Config . . . . . . . . . 162
Parameters . . . . . . 162

file Buffer Plugin 163
Example Config . . . . . . . . . L 163
Parameters . . . . . L 163
Writing plugins 164
Installing custom plugins . . . . . . . . Lo e 164
Writing Input Plugins . . . . . . . . . oL 164
Writing Buffered Output Plugins . . . . . . . ... .0 165
Writing Time Sliced Output Plugins . . . . . . . . ... o 166
Writing Non-buffered Output Plugins . . . . . . . .. ... o 166
Customizing the Tail Input Plugin Parser . . . . . . . .. .. .. ... .. .. ... 167
Logging . . . . . . . . e 168
Supporting Older Fluentd Versions . . . . . . . . . . . ... 168
Debugging plugins . . . . . . . . e e e 169
Writing test cases . . . . . . . L 169
Further Reading . . . . . . . . . . L e 170
Community 170
Mailing List 170

19



Source Code 171

Bug Tracking 171
ChangeLog 171
Fluentd Changellog . . . . . . . . . . . 171
td-agent Changellog . . . . . . . . . L 171

20



Overview of Fluentd

Fluentd is a fully free and open-source log management tool that simplifies your data collection and
storage pipeline. It eliminates the need to maintain a set of ad-hoc scripts.

21



- .mongoDB

T

Log Files File
\ /
y ‘@"%%gamp

5 syslog-ng — fluentd . amazon

/ \ webservices™
l'l My SC]L

é

Zﬁ; - srs:m;‘_:r /\< ‘ mongoDB
. . K ﬁgﬂc‘ﬂ 7 |
Log Files parse da File
a‘r:;grc attion
TV O EplhE
aggregaton
pt
W iy A
3K syslog-ng @7@@%{ ! )\ mazon
_ webservices™
o .
4 ' l z‘r:sria/mdk Crofy S L.
' P loadin ':l Q

22



After Fluentd
Before

This presentation provides an overview of Fluentd, an introduction to its unique features, and a comparison
with other prominent logging solutions.

Now that you have a better understanding of Fluentd, let’s give it a spin!

Get Started

Quickstart Guide

Let’s get started with Fluentd! Fluentd is a fully free and fully open-source log collector that instantly
enables you to have a ‘Log Everything’ architecture with 125+ types of systems.

Access logs Alerting
Apache Nagios

App logs Analysis

Frontend MongoDB
Backend MySQL

System logs / Huenka \ Hadoop

syslogd

filter / buffer / routing ArChwmg
Databases Amazon S3

Fluentd treats logs as JSON, a popular machine-readable format. It is written primarily in C with a thin-
Ruby wrapper that gives users flexibility.

Fluentd’s performance has been proven in the field: its largest user currently collects logs from 5000+
servers, 5 TB of daily data, handling 50,000 msgs/sec at peak time.

Stepl: Installing Fluentd

Please follow the installation/quickstart guides below that matches your environment.

o Install Fluentd by Homebrew (Mac OS X)

o Install Fluentd by RPM package (Redhat Linux)

o Install Fluentd by Deb package (Ubuntu/Debian Linux)
o Install Fluentd by Ruby Gem

23



o Install Fluentd by Chef
o Install Fluentd from source

NOTE: Fluentd is currently not supported on Windows. Please see the FAQ for details.

Step2: Use Cases

The articles shown below cover the typical use cases of Fluentd. Please refer to the article(s) that suits your
needs.

¢ Use Cases

— Data Search like Splunk
Data Filtering and Alerting

Data Analytics with Treasure Data
Data Collection to MongoDB

Data Collection to HDFS

Data Archiving to Amazon S3

Windows Event Collection

o Basic Configuration

— Config File
o Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
o Happy Users :)

— Users

Step3: Learn More

The articles shown below will provide detailed information for you to learn more about Fluentd.

e Architecture Overview
¢ Plugin Overview

— Input Plugins
— Output Plugins
— Buffer Plugins

o High Availability Configuration
« FAQ

Before Installing Fluentd

You MUST set up your environment according to the steps below before installing Fluentd. Failing to do so
will be the cause of many unnecessary problems.

Set Up NTP

It’s HIGHLY recommended that you set up ntpd on the node to prevent invalid timestamps in your logs.

24



Increase Max # of File Descriptors

Please increase the maximum number of file descriptors. You can check the current number using the ulimit
-n command.

$ ulimit -n
65535

If your console shows 1024, it is insufficient. Please add following lines to your /etc/security/limits.conf
file and reboot your machine.

root soft nofile 65536
root hard nofile 65536
* soft nofile 65536
* hard nofile 65536

Optimize Network Kernel Parameters
For high load environments consisting of many Fluentd instances, please add these parameters to your

/etc/sysctl.conf file. Please either type sysctl -w or reboot your node to have the changes take effect.
If your environment doesn’t have a problem with TCP_ WAIT, then these changes are not needed.

net.ipv4.tcp_tw_recycle = 1
net.ipvé4.tcp_tw_reuse = 1
net.ipv4.ip_local_port_range = 10240 65535

Installing Fluentd Using rpm Package

This article explains how to install the td-agent rpm package, the stable Fluentd distribution package
maintained by Treasure Data, Inc.

What is td-agent?

Fluentd is written in Ruby for flexibility, with performance sensitive parts written in C. However, casual
users may have difficulty installing and operating a Ruby daemon.

That’s why Treasure Data, Inc is providing the stable distribution of Fluentd, called td-agent. The
differences between Fluentd and td-agent can be found here.

Step0: Before Installation

Please follow the Preinstallation Guide to configure your OS properly. This will prevent many unnecessary
problems.

25


http://www.treasuredata.com/
http://www.treasuredata.com/

Stepl: Install from rpm Repository

CentOS and RHEL 5.0+ are currently supported.

Executing install-redhat.sh will automatically install td-agent on your machine. This shell script registers a
new rpm repository at /etc/yum.repos.d/td.repo and installs the td-agent rpm package.

$ curl -L http://toolbelt.treasuredata.com/sh/install-redhat.sh | sh

NOTE: It’s HIGHLY recommended that you set up ntpd on the node to prevent invalid timestamps in your
logs.

Step2: Launch Daemon

The /etc/init.d/td-agent script is provided to start, stop, or restart the agent.

$ /etc/init.d/td-agent start
Starting td-agent: [ 0K ]

$ /etc/init.d/td-agent status
td-agent (pid 21678) is running...

The following commands are supported:

$ /etc/init.d/td-agent start

$ /etc/init.d/td-agent stop

$ /etc/init.d/td-agent restart
$ /etc/init.d/td-agent status

Please make sure your configuration file is located at /etc/td-agent/td-agent.conf.

Step3: Post Sample Logs via HTTP

By default, /etc/td-agent/td-agent. conf is configured to take logs from HTTP and route them to stdout
(/var/log/td-agent/td-agent.log). You can post sample log records using the curl command.

$ curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test

Next Steps

You’re now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

e Basic Configuration

— Config File
e Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
o Examples

— Store Apache Log into Amazon S3

26


http://toolbelt.treasuredata.com/sh/install-redhat.sh

— Store Apache Log into MongoDB
— Data Collection into HDFS

Please refer to the resources below for further steps.

e ChangeLog of td-agent
e Chef Cookbook

Installing Fluentd Using deb Package

This article explains how to install the td-agent deb package, the stable Fluentd distribution package main-
tained by Treasure Data, Inc.

NOTE: “Ubuntu 12.04 LTS / Precise” and “Ubuntu 10.04 LTS / Lucid” are currently supported. If you
are interested in Debian, please contact us on the mailing list. If enough people express interest, we may
consider supporting it.

What is td-agent?

Fluentd is written in Ruby for flexibility, with performance sensitive parts written in C. However, casual
users may have difficulty installing and operating a Ruby daemon.

That’s why Treasure Data, Inc is providing the stable distribution of Fluentd, called td-agent. The
differences between Fluentd and td-agent can be found here.

Step0: Before Installation

Please follow the Preinstallation Guide to configure your OS properly. This will prevent many unnecessary
problems.

GPG key

The deb package is signed with the Treasure Data GPG key, which can be found here. We recommend
importing the GPG key to apt.

$ wget -0 - http://packages.treasure-data.com/debian/RPM-GPG-KEY-td-agent | sudo apt-key add -

Stepl (Ubuntu): Install from Apt Repository

“Ubuntu 12.04 LTS / Precise” and “Ubuntu 10.04 LTS / Lucid” are currently supported.

Ubuntu Precise Executing install-ubuntu-precise.sh will automatically install td-agent on your machine.
This shell script registers a new apt repository at /etc/apt/sources.list.d/treasure-data.list and
installs the td-agent deb package.

$ curl -L http://toolbelt.treasuredata.com/sh/install-ubuntu-precise.sh | sh

27


http://docs.treasuredata.com/articles/td-agent-changelog
https://github.com/treasure-data/chef-td-agent/
http://www.treasuredata.com/
http://www.treasuredata.com/
http://packages.treasure-data.com/
http://toolbelt.treasuredata.com/sh/install-ubuntu-precise.sh

Ubuntu Lucid Executing install-ubuntu-lucid.sh will automatically install td-agent on your machine.
This shell script registers a new apt repository at /etc/apt/sources.list.d/treasure-data.list and
installs the td-agent deb package.

$ curl -L http://toolbelt.treasuredata.com/sh/install-ubuntu-lucid.sh | sh

NOTE: It’s HIGHLY recommended that you set up ntpd on the node to prevent invalid timestamps in your
logs.

Step2: Launch Daemon

The /etc/init.d/td-agent script is provided to start, stop, or restart the agent.

$ /etc/init.d/td-agent restart
$ /etc/init.d/td-agent status
td-agent (pid 21678) is running...

The following commands are supported:

$ /etc/init.d/td-agent start
$ /etc/init.d/td-agent stop
$ /etc/init.d/td-agent restart
$ /etc/init.d/td-agent status

Please make sure your configuration file is located at /etc/td-agent/td-agent.conf.

Step3: Post Sample Logs via HTTP

By default, /etc/td-agent/td-agent. conf is configured to take logs from HTTP and route them to stdout
(/var/log/td-agent/td-agent.log). You can post sample log records using the curl command.

$ curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test

Next Steps

You’re now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

« Basic Configuration

— Config File
e Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
o Examples

— Store Apache Log into Amazon S3
— Store Apache Log into MongoDB
— Data Collection into HDF'S

Please refer to the resources below for further steps.

o ChangeLog of td-agent
e Chef Cookbook

28


http://toolbelt.treasuredata.com/sh/install-ubuntu-lucid.sh
http://docs.treasuredata.com/articles/td-agent-changelog
https://github.com/treasure-data/chef-td-agent/

Installing Fluentd Using Ruby Gem

This article explains how to install Fluentd using Ruby gem.

Step0: Before Installation

Please follow the Preinstallation Guide to configure your OS properly. This will prevent many unnecessary
problems.

Stepl: Install Ruby interpreter

Please install Ruby >= 1.9.2 on your local environment.

Step2: Install Fluentd gem

Fetch and install the fluentd Ruby gem using the gem command. The official ruby gem page is here.

$ gem install fluentd --no-ri --no-rdoc

Step3: Run

Run the following commands to confirm that Fluentd was installed successfully:

$ fluentd --setup ./fluent
$ fluentd -c ./fluent/fluent.conf -vv &
$ echo '{"json":"message"}' | fluent-cat debug.test

.9

The last command sends Fluentd a message ‘{“json”:"message”}’ with a “debug.test” tag. If the installation
was successful, Fluentd will output the following message:

2011-07-10 16:49:50 +0900 debug.test: {"json":"message"}

NOTE: It’s HIGHLY recommended that you set up ntpd on the node to prevent invalid timestamps in your
logs.

NOTE: For large deployments, you must use jemalloc to avoid memory fragmentation. This is already
included in the rpm and deb packages.

NOTE: The Fluentd gem doesn’t come with /etc/init.d/ scripts. You should use process management tools
such as daemontools, runit, supervisord, or upstart.

Next Steps

You’re now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

¢ Basic Configuration

— Config File

29


https://rubygems.org/gems/fluentd

e Application Logs
— Ruby, Java, Python, PHP, Perl, Node.js, Scala
e Examples

— Store Apache Log into Amazon S3
— Store Apache Log into MongoDB
— Data Collection into HDF'S

Installing Fluentd Using Chef

This article explains how to install Fluentd using Chef.

Step0: Before Installation

Please follow the Preinstallation Guide to configure your OS properly. This will prevent many unnecessary
problems.

Stepl: Import Recipe

The chef recipe to install td-agent can be found here. Please import the recipe, add it to run_ list, and
upload it to the Chef Server.

Step2: Run chef-client

Please run chef-client to install td-agent across your machines.

Next Steps

You’re now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

e Basic Configuration

— Config File
o Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
o Examples

— Store Apache Log into Amazon S3
— Store Apache Log into MongoDB
— Data Collection into HDF'S

Installing Fluentd using Homebrew (MacOS X)

This article explains how to install td-agent, the stable Fluentd distribution package maintained by Treasure
Data, Inc, on MacOS X.

30


https://github.com/treasure-data/chef-td-agent
http://www.treasuredata.com/
http://www.treasuredata.com/

What is td-agent?

Fluentd is written in Ruby for flexibility, with performance sensitive parts written in C. However, casual
users may have difficulty installing and operating a Ruby daemon.

That’s why Treasure Data, Inc is providing the stable distribution of Fluentd, called td-agent. The
differences between Fluentd and td-agent can be found here.

For MacOS X, we’re using the Homebrew packaging manager to distribute td-agent.

NOTE: If you are using RVM, please disable it. RVM will cause an error where fluentd cannot be loaded
from the td-agent formula.

Stepl: Install Homebrew
If you haven’t installed Homebrew on your Mac yet, please install it using the command below.

$ ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"
$ which brew
/usr/local/bin/brew

Step2: Install td-agent

Once you have the brew command, please use brew install to fetch the td-agent formula and install
td-agent.

$ brew install "http://toolbelt.treasuredata.com/brew/td-agent.rb"
You can launch td-agent in a foreground process.

$ td-agent
2013-04-19 16:55:03 -0700 [info]: starting fluentd-0.10.33
2013-04-19 16:55:03 -0700 [info]: reading config file path="/usr/local/etc/td-agent/td-agent.conf"

Alternatively, you can manage the td-agent daemon process with launchctl. This is not necessary, but
it’s convenient if you want to continuously run td-agent in the background. Let’s register td-agent as a
built-in daemon and launch it using the launchctl command.

# Register
$ 1In -sfv /usr/local/opt/td-agent/homebrew.mxcl.td-agent.plist ~/Library/LaunchAgents/.

# Start

$ launchctl load ~/Library/LaunchAgents/homebrew.mxcl.td-agent.plist

$ ps aux | grep 'td-agent'

kzk 66680 0.0 0.0 2432768 616 s002 R+ 4:49PM 0:00.00 grep td-agent

kzk 66673 0.0 0.1 2476340 20604 77 S 4:49PM 0:00.10 /usr/local/Cellar/td-agent/1.1.12/bin/ruby /usr/local
kzk 66672 0.0 0.1 2454904 14624 77 S 4:49PM 0:00.12 /usr/local/Cellar/td-agent/1.1.12/bin/ruby /usr/local

# Stop
$ launchctl unload ~/Library/LaunchAgents/homebrew.mxcl.td-agent.plist

Please make sure your configuration file is located at /usr/local/etc/td-agent/td-agent.conf. Your
plugin directory is at /usr/local/etc/td-agent/plugin.

31


http://www.treasuredata.com/
http://mxcl.github.io/homebrew/

Step3: Post Sample Logs via HTTP
By default, /usr/local/etc/td-agent/td-agent.conf is configured to take logs from HTTP and route

them to stdout (/usr/local/var/log/td-agent/td-agent.log). You can post sample log records using
the curl command.

$ curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test
$ tail -n 1 /usr/local/var/log/td-agent/td-agent.log
2013-04-19 16:51:47 -0700 debug.test: {"json":"message"}

Next Steps

You're now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

e Basic Configuration

— Config File
o Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
e Examples

— Store Apache Log into Amazon S3

— Store Apache Log into MongoDB

— Data Collection into HDF'S

Please refer to the resources below for further steps.

e ChangeLog of td-agent
e Chef Cookbook

Installing Fluentd from Source

This article explains how to install Fluentd from source code (git repository). This is useful for developers.

Stepl: Install Ruby interpreter

Please install Ruby >= 1.9.2 on your local environment.

Step2: Fetch Source Code

Fetch the source code from github. The official repository is located here.

$ git clone https://github.com/fluent/fluentd.git
$ cd fluentd

32


http://docs.treasuredata.com/articles/td-agent-changelog
https://github.com/treasure-data/chef-td-agent/
http://github.com/fluent/fluentd/

Step3: Build and Install

Build the package with rake and install it with gem.

$ rake build

Successfully built RubyGem

Name: fluentd

Version: xxx

File: fluentd-xxx.gem

$ gem install pkg/fluentd-xxx.gem

Step4: Run

Run the following commands to to confirm that Fluentd was installed successfully:

$ fluentd --setup ./fluent
$ fluentd -c ./fluent/fluent.conf -vv &
$ echo '{"json":"message"}' | fluent-cat debug.test

99,9

The last command sends Fluentd a message ‘{“json”:"message”}’ with a “debug.test” tag. If the installation
was successful, Fluentd will output the following message:

2011-07-10 16:49:50 +0900 debug.test: {"json":"message"}

NOTE: It’s HIGHLY recommended that you set up ntpd on the node to prevent invalid timestamps in your
logs.

NOTE: For large deployments, you must use jemalloc to avoid memory fragmentation. This is already
included in the rpm and deb packages.

Next Steps

You’re now ready to collect your real logs using Fluentd. Please see the following tutorials to learn how to
collect your data from various data sources.

e Basic Configuration

— Config File
e Application Logs

— Ruby, Java, Python, PHP, Perl, Node.js, Scala
e Examples

— Store Apache Log into Amazon S3
— Store Apache Log into MongoDB
— Data Collection into HDFS

Install Fluentd (td-agent) on Heroku

This article describes how to install Fluentd (td-agent) on Heroku.

33


http://www.heroku.com/

Create Your App
Heroku doesn’t allow users to install separate processes within a single dyno. You will thus need to setup
Fluentd as a separate Heroku application. This will become you central log aggregation server.

Treasure Data provides a boilerplate repository to get you started. Follow the steps below to create Fluentd
(td-agent) as a Heroku application.

# Clone

$ git clone git://github.com/treasure-data/heroku-td-agent.git
$ cd heroku-td-agent

$ rm -fR .git

$ git init

$ git add .

$ git commit -m 'initial commit'

# Create the app & deploy

$ heroku create --stack cedar

$ git push heroku master

# Modify your conf
$ vi td-agent.conf
$ git commit -a -m 'update config file'

# Deploy
$ git push heroku master

Test

Let’s confirm that the log aggregation server has been set up correctly. Please send a GET request to the
log server, http://td-agent-on-heroku.herokuapp.com, as shown below. This will log the event { “json”:
“message” } with a debug.sample tag. Note how the JSON-formatted data is passed as a query parameter
value.

$ curl "http://td-agent-on-heroku.herokuapp.com/debug.sample?json=/7B%22json%22%3A%22message%22/%7D"
In general, the URL format is

http://{YOUR LOG SERVER DOMAIN}/td.{DB_NAME}.{TABLE_NAME}?json={JSON_FORMATTED_DATA}

The output will be available on STDOUT.

$ heroku logs --tail

Installing Fluentd (td-agent) on Elastic Beanstalk

A boilerplate application to install td-agent on your AWS Elastic Beanstalk application is provided in this
repository. Please follow the instructions in the README file.

o treasure-data/elastic-beanstalk-td-agent

34


https://github.com/treasure-data/elastic-beanstalk-td-agent
https://github.com/treasure-data/elastic-beanstalk-td-agent
https://github.com/treasure-data/elastic-beanstalk-td-agent

Fluentd Users

These are the some of Fluentd users.

NOTE: Are you using Fluentd? If so, please share your testimonial with us to help expand the community!
:) Please send me a message with your testimonial, name, title, and company’s logo!

Backplane, Inc.

BACHPLANE

When I first started at Backplane, I wanted to get us to start logging everything and aggregating it in JSON,
and I wanted that system up and running fast. Fluentd got me there in less than a day. I was skeptical of
reliability at first, but it takes so little time to setup, there’s no reason not to try it.

It hasn’t crashed once yet, works exactly as I need it to thanks to the huge plugin library, and likely saved
us a ton of time. As an added bonus: the user list for Fluentd was also way more responsive when I ran into
initial setup questions than those of any competitors. If you want to start logging your data fast, Fluentd is
a great way to go. - Eli Finkelshteyn, Lead Data Scientist

ContextLogic, Inc.

2 Context!

At wish.com, we started using Fluentd from early on to collect user event data. Its reliability and ease of use
from application code (Python for us) make it easy for us to keep track of the key metrics. - Danny Zhang,
co-founder

CyberAgent, Inc.

* CyberAgent

CyberAgent (TYO:4751) is a Tokyo based company that specializes in internet business. We are expanding
our businesses in the field of Social Network Services and Web advertising.

Though collecting and analyzing log data is quite important in our services, we had no choice but to conduct
in conventional methods such as using Hadoop to analyze log data or rsync and script.

That is why we began to use Fluentd. Fluentd made it possible to collect existing log with significantly
lower resources, while it is not affecting the analyzing process. We introduced this system successfully and
safely.

Fluentd helps us collect and analyze an app log and midleware log efficiently. And as a result, it improves
our daily operation and services. - Tomomitsu Tsuda, General Manager

35



DeNA Co., Ltd.

DeNA

DeNA Co., Ltd. (pronounced “D-N-A”) is a global Internet company (TSE:2432) focused on social games
and e-commerce. DeNA operates the Mobage platform, which is one of the most successful gaming service
in Japan with more than 49 million registered players as of March, 2013.

We use Fluentd for log monitoring, visualization of metrics, and realtime log collection. It can deal with the
log of our large-scaled servers. We are very happy with its reliability, and flexibility provided by its plugin
mechanism. - Naotoshi Seo, Infrastructure Engineer

Drecom Co., Ltd.

Sk DRECOM

Drecom (TYO0:3793), based in Tokyo, is planning and developing many types of services which are focusing
on word “communication” such as: mobile contents, internet advertising, etc. In our business, Log collection
and analysis is essential in order to continue to provide services of the highest satisfaction to the user.

Fluentd is easy to install, reliable, and provides support with out interfering with our regular tasks. If
anything, we are paying attention to not forget the presence of the silent daemon. It can not only provide
many plugins, but also have and can develop add plugins with necessary functions.

We are pleased to fluent work with the Fluentd daemon.

GREE, Inc.

@®GREE

Data Science is at the core of GREE (TY0:3632)’s business, and it starts with logging user events and
Advertisement related data. We currently deploy Fluentd for a number of our games and ad services to
federate user event data, and use that data to inform our product decisions.

So far, we’'ve been pleased with Fluentd’s robustness and performance: it has held up strongly against our
massive data, allowing us to focus on data analytics instead of logging. - Masaki Fujimoto, CTO

LINE Corporation.

LINE Corp., based in Tokyo, is web services company. Log collection and analysis is one the most important
missions in our day-to-day operations. As such we have spent quite a long time to search for the right tool
that can process and collect data from various sources with great flexibility and high throughput — and we
came up with Fluentd.

We utilize Fluentd to collect a very large amount of logs. The logs are written into Hadoop HDFS clusters,
and are also used to analyze various service statuses in realtime. We also use many plugins from rubygems.org
to further enhance this mechanism. - Satoshi Tagomori

36


http://dena.com/

Livesense, Inc.

¢s LIVESENSE

Livesense Inc. (TY0:6054) engages in the internet business. We operates internet media in the fields of HR
(jobs), real estate and new businesses. We were founded in 2006 and is headquartered in Tokyo, Japan.

Since we adopted Fluentd, our services have acquired to integrate collecting various structured events and
log data. It is not only for collecting logs, it could preprocess logs with many swiss-army knife plugins to
make it easy to analyze them. Also we could easily to create input/output plugins as needed. Fluentd has
been worked in our business to help day-by-day data driven development for our Growth Hacker. Therefore,
I felt Fluentd is revolutionary log collection tool I have ever seen. - Kentaro Yoshida

NAMCO BANDAT Studios Inc.

BANDAI
NAMCO

BAMNDAI NANCD Studios

NAMCO BANDAI Studios Inc. is a platform-agnostic development studio that mainly develops console
games, arcade games, online games, and mobile games. Besides games, NBSI also produces music, movie,
and other entertainment content.

Log file analysis is key to examining user trends for our game services. We keep numerous logs such as access
logs, error logs, and action logs. In order to efficiently analyze the information, we needed a solution flexible
enough to aggregate the data from all the various logs.

The Fluentd concept fits our needs perfectly. For a large-scale service with hundreds of thousands of users,
Fluentd’s scalability has proven to be valuable. - Yasuhiro Ishimaru

Nintendo, Inc.

(Ninlirndu)

We use Fluentd to collect massive data logs for our platforms. Having developed a system based on Fluentd,
we are now effectively monitoring and analyzing our services in real-time. We are very much satisfied with
its flexibility, especially how easy it is to use in tandem with other systems.

37



PPLive, Inc.

PETV

gTADREeH

PPTV.com is one of the largest Chinese online TV provider, which has 35 million active users. PPTV clients
can be installed on multi-platforms (Windows, Mac, Android, iOS, WP, etc).

We (PPTV site operation team) tried to find a solution to do realtime log-collection and analyse based on
the massive logfiles. Finally, we found that Fluentd is the perfect solution to do real-time log collection. Log
can be JSON-structured to MongoDB cluster.

Realtime monitoring/reporting/charting can be generated from MongoDB data, which is helpful to our
operation work. Fluentd is a great tool! - Xinyi Zhou, Site Operation Team

SlideShare, Inc.

;i: lideshare

SlideShare uses Fluentd to stream logs and events in the cloud. We were looking for a versatile yet lightweight
logger in Ruby, and Fluentd fit the bill perfectly. - Sylvain Kalache, Operations Engineer

Uken Games

(LXEN

G AMES

Uken Games is a Canadian cross-platform gaming company. Our users generate a lot of logs, and Fluentd
made it really easy for us to manage them. It also allowed us to painlessly try and compare new solutions
for log analysis, simply by modifying configs and zero-downtime restarting the client. Deploying Fluentd
was a breeze with Chef. - Pitr Vernigorov

Viki, Inc.

At Viki, we use Fluentd deployed on Heroku to collect analytics events from various apps which then go
into Treasure Data and in-house Hadoop Cluster for analysis. Fluentd integrates seamlessly with Heroku,
and we’ve been impressed with its versatility and reliability. - Abhishek Parolkar, BigData Infrastructure
Manager

38



FAQ

Fluentd Core
Fluentd is written in Ruby. Is it slow?

The most performance sensitive parts of Fluentd are written in C. The Ruby code acts as a wrapper that
provides flexibility to the overall solution. In particular, the networking layer and object serialization layer
are written in C (See cool.io and MessagePack).

Since Fluentd is not written entirely in C or C++, it may be slow in its Ruby parts. But by giving up a
little bit of speed, we have gained many plugins from the Ruby community :). Fluentd’s performance has
been put to the test at many large services; in fact, a regular PC box can handle 18,000 messages/second
with a single process.

If this number is insufficient for your application, please consider other solutions which are written entirely
in C-family or Java. However, please note that you will lose some flexibility as a tradeoff.

Does Fluentd run on Windows?

Unfortunately, no. There are two issues.

1. Fluentd depends on a Ruby gem called cool.io, which doesn’t work on Windows
2. Fluentd uses *nix dependent code

We have recently resolved issue 1 by becoming the Cool.io maintainer ourselves. Cool.io v1.2 now supports
the Windows environment. We're now working on resolving issue 2 on Windows branch. See github:
Windows branch

How can I collect logs from a Windows Machine?

You can use nxlog with the syslog protocol. Please see the Collecting Log Data from Windows article for
details.

Does Fluentd have Ul or storage?

No, Fluentd doesn’t have either Ul or storage. However, Kibana integration may be useful for you.

What is Fluentd’s ‘tag’?

Each Fluentd event log consists of the three components:

e tag
e time
e Imessage

A tag must be specified for every log sent to Fluentd. The tag is used to route the message within Fluentd.
The ‘match’ section in the configuration file specifies the tags that are routed to each destination.

Let’s take a look at the example below. This configuration tails /var/log/combine.log and generates Fluentd
logs with tag ‘test-tag’

39


https://github.com/tarcieri/cool.io
http://msgpack.org/
http://fluentd.org/plugin/
https://github.com/fluent/fluentd/tree/windows
http://docs.fluentd.org/articles/windows

<source>
type tail
format /~(?<wholemsg>.*)$/
path /var/log/combined.log
tag test-tag

</source>

If you add the following lines to the configuration file, the logs are routed to stdout.

<match test-tag>
type stdout
</match>

On the other hand, adding the following lines to the configuration file will not route the logs anywhere, since
the match section doesn’t match the tag.

<match some-other-tag>
type stdout
</match>

In essence, you can control your data process flow by using tags.

NOTE: The match section specifies the regexp used to look for matching tags. If a matching tag is found in
a log, then the config inside the ‘match’ section is used (i.e. the log is routed according to the config inside).

How can I estimate Fluentd’s resource usage?

Fluentd consumes more resources as more logs are thrown at it. We have found that the CPU becomes
a major bottleneck for heavily loaded Fluentd systems. To combat this bottleneck, Fluentd can leverage
multiple CPU cores through its multi-process mode. A regular PC box is able to handle around 18,000
msgs/second.

How is Fluentd’s performance?

The most performance sensitive parts of Fluentd are carefully written in C, with Ruby code acting as a
flexible wrapper. In addition, Fluentd can leverage multiple CPU cores through its multi-process plugin.

In our benchmark experiments, a regular PC box was able to deliver 18,000 messages/second. If you need
to handle a higher load, please consider using multiple Fluentd servers. If your application needs 100x this
performance, please consider using other solutions or creating a custom solution.

Treasure Agent(td-agnt)
What are the differences between td-agent and Fluentd?

td-agent is the stable distribution package of Fluentd which includes its own Ruby installation. The
differences are as follows:

<th>
<td>fluentd</td>
<td>td-agent</td>

40



</th>

<tr>
<td>Installation</td>
<td>gem install fluentd</td>
<td><a

href=“http://docs.fluentd.org/articles/install-by-rpm”>.rpm/.deb packages for Linux. Homebrew for OSX
Configuration

generic

preconfigured to send data to Treasure Data (can be modified)

Adding 3rd party plugins

fluent-gem (ex: fluent-gem install fluent-plugin-td)

fluent-gem and manual setup (but it ships with several plugins pre-loaded)
init.d script (for production deployment)

No (the user needs to write shell script to set it up)

Yes (shipped with .deb and .rpm)

Chef recipe

No

Yes

Memory allocator

OS default

optimized (jemalloc)

QA /Support

Community-driven

QA by Treasure Data/Support for Treasure Data’s paid customers

Please also see this section before installing plugins.

Should I use td-agent or the Fluentd gem?

td-agent stresses stability over new features. If you wish to control Fluentd features and updates on your
own, using the Fluentd gem is recommended. If you are using Fluentd for the first time or are using it in a

large scale environment, using td-agent is recommended. A new version of td-agent is released every 2 or 3
months.

Fluentd compared to other projects
What’s the difference between Logstash and Fluentd?

Fluentd’s built-in buffering mechanism offers both simplicity and robustness simultaneously. Check out the
blog post below for more details.

e Fluentd vs Logstash

41


http://jasonwilder.com/blog/2013/11/19/fluentd-vs-logstash/

What’s the difference between Scribe and Fluentd?

First, Fluentd is actively maintained while Scribe is not. Scribe is no longer used by Facebook, and is thus
no longer maintained. Facebook has rewritten Scribe in Java, and now calls it Calligraphus.

Second, Scribe is more performant than Fluentd because it’s written in C++; but as a tradeoff, it is difficult
to extend compared to Fluentd.

What’s the difference between Kafka and Fluentd?

Pull v.s. Push. Kafka is almost like a queue. Kafka needs another application to “pull” logged events to store
them. Meanwhile, Fluentd supports output plugins which “push” logged events to a storage destination.

Fluentd’s push-based architecture also takes care of “buffering”. When file transfers to your backend storage
fails, Fluentd automatically retries the transfer of the buffered file. When using Kafka, you need to handle
the retry mechanism yourself.

What’s the difference between Flume and Fluentd?

Java v.s. C + Ruby. If you intend to use the Hadoop-family of products especially CDH (Cloudera Distri-
bution for Hadoop) as your backend, Flume may provide better support or compatibility than Fluentd.

Meanwhile, Fluentd is backend-storage agnostic, has less memory footprint, and is easy to use and extend.
What’s the difference between Splunk and Fluentd?

Splunk is a log collection + search engine for unstrucuted, text-based logs. It has a nice UI and indexing
engine for searching for terms within text log files.

Fluentd is a log collector daemon for semi-structured JSON-based logs. It deals with machine-readable
logs, whereas Splunk handles text-based logs. Also, Fluentd is simply a mechanism for receiving, buffering,
and forwarding data to another destination. It does not have search engine functionality but you can use
ElasticSearch + Kibana as a backend to search the logs.

Operations
I have a weird timestamp value, what happened?

The timestamps of Fluentd and its logger libraries depend on your system’s clock. It’s highly recommended
that you set up NTP on your nodes so that your clocks remain synced with the correct clocks.

I installed td-agent and want to add custom plugins. How do I do it?
Please use fluent-gem as shown below.

$ /usr/lib/fluent/ruby/bin/fluent-gem install <plugin name>

For example, issue the following command if you are adding fluent-plugin-twitter.

$ /usr/lib/fluent/ruby/bin/fluent-gem install fluent-plugin-twitter

42


http://www-conf.slac.stanford.edu/xldb2011/talks/xldb2011_tue_0940_facebookrealtimeanalytics.pdf

(If you can’t find fluent-gem in the above directory, try looking in /usr/1ib64/fluent/ruby/bin/fluent-gem)

Now you might be wondering, “Why do I need to specify the full path?” The reason is that td-agent does
not modify any host environment variable, including PATH. If you want to make all td-agent/fluentd related
programs available without writing “/usr/lib/...” every time, you can add

export PATH=$PATH:/usr/lib/fluent/ruby/bin/

to your ~/.bash_profile.

If you would like to find out more about plugin mangement, please take a look at the Plugin Management
article.

How can I match (send) an event to multiple outputs?

You can use the copy output plugin to send the same event to multiple output destinations.

Plugin Development
How do I develop a custom plugin?

Please refer to the Plugin Development Guide.

Data Import from Ruby Applications

The ‘fluent-logger-ruby’ library is used to post records from Ruby applications to Fluentd.

This article explains how to use the fluent-logger-ruby library.
Prerequisites
e Basic knowledge of Ruby

e Basic knowledge of Fluentd
e Ruby 1.8 or later

Installing Fluentd

Please refer to the following documents to install fluentd.

Install Fluentd with rpm Package
Install Fluentd with deb Package
Install Fluentd with Ruby Gem
Install Fluentd from source

43


http://docs.fluentd.org/articles/plugin-development
http://github.com/fluent/fluent-logger-ruby

Modifying the Config File
Next, please configure Fluentd to use the forward Input plugin as its data source.

<source>
type forward
port 24224

</source>

<match fluentd.test.**>
type stdout

</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

Using fluent-logger-ruby

First, add the ‘fluent-logger’ gem to your Gemfile.

gem 'fluent-logger', "~> 0.4.3"

Next, please initialize and post the records as shown below.

require 'fluent-logger'

Fluent::Logger: :FluentLogger.open(nil, :host=>'localhost', :port=>24224)
Fluent::Logger.post("fluentd.test.follow", {"from"=>"userA", "to"=>"userB"})
Executing the script will send the logs to Fluentd.

$ ruby test.rb

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins
Various output plugins are available for writing records to other destinations:

o Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

44


http://fluentd.org/plugin/

High-Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Data Import from Python Applications

The ‘fluent-logger-python’, library is used to post records from Python applications to Fluentd.
This article explains how to use the fluent-logger-python library.

Prerequisites

» Basic knowledge of Python
e Basic knowledge of Fluentd
e Python 2.6 or higher

Installing Fluentd
Please refer to the following documents to install fluentd.

e Install Fluentd with rpm Package
e Install Fluentd with deb Package
e Install Fluentd with Ruby Gem

e Install Fluentd from source

Modifying the Config File
Next, please configure Fluentd to use the forward Input plugin as its data source.

<source>
type forward
port 24224

</source>

<match fluentd.test.**>
type stdout

</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

45


http://github.com/fluent/fluent-logger-python

Using fluent-logger-python

First, install the fluent-logger library via pip.
$ pip install fluent-logger
Next, initialize and post the records as shown below.

# test.py
from fluent import sender
from fluent import event
sender.setup('fluentd.test', host='localhost', port=24224)
event.Event ('follow', {
'"from': 'userA',
"to': 'userB'

1))
Executing the script will send the logs to Fluentd.
$ python test.py

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

o Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

High-Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

46


http://fluentd.org/plugin/

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Data Import from PHP Applications

The ‘fluent-logger-php’ library is used to post records from PHP applications to Fluentd.
This article explains how to use the fluent-logger-php library.

Prerequisites

e Basic knowledge of PHP
o Basic knowledge of Fluentd
o PHP 5.3 or higher

Installing Fluentd

Please refer to the following documents to install fluentd.

e Install Fluentd with rpm Package
e Install Fluentd with deb Package
e Install Fluentd with Ruby Gem

e Install Fluentd from source

Modifying the Config File

Next, please configure Fluentd to use the forward Input plugin as its data source.

# Unix Domain Socket Input
<source>
type unix
path /var/run/td-agent/td-agent.sock
</source>
<match fluentd.test.**>
type stdout
</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

47


http://github.com/fluent/fluent-logger-php

Using fluent-logger-php

To use fluent-logger-php, copy the library into your project directory.

$ git clone https://github.com/fluent/fluent-logger-php.git
$ cp -r src/Fluent <path/to/your_project>

Next, initialize and post the records as shown below.

<7php

require_once __DIR__.'/src/Fluent/Autoloader.php';

use Fluent\Logger\FluentLogger;

Fluent\Autoloader: :register();

$logger = new FluentLogger ("unix:///var/run/td-agent/td-agent.sock");
$logger->post ("fluentd.test.follow", array("from"=>"userA", "to"=>"userB"));

Executing the script will send the logs to Fluentd.
$ php test.php

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

e Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

o ctc..

High- Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

48


http://fluentd.org/plugin/

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Data Import from Perl Applications

The ‘Fluent::Logger’ library is used to post records from Perl applications to Fluentd.

This article explains how to use the Fluent::Logger library.

Prerequisites

o Basic knowledge of Perl
o Basic knowledge of Fluentd
e Perl 5.10 or higher

Installing Fluentd

Please refer to the following documents to install fluentd.

e Install Fluentd with rpm Package
e Install Fluentd with deb Package
e Install Fluentd with Ruby Gem

e Install Fluentd from source

Modifying the Config File

Next, please configure Fluentd to use the forward Input plugin as its data source.

<source>
type forward
port 24224

</source>

<match fluentd.test.**>
type stdout

</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

49


http://github.com/fluent/fluent-logger-perl

Using Fluent::Logger

First, install the Fluent::Logger library via CPAN.

$ cpan
cpan[1]> install Fluent::Logger

Next, initialize and post the records as shown below.

# test.pl
use Fluent: :Logger;
my $logger = Fluent::Logger->new(
host => '127.0.0.1",
port => 24224,
tag_prefix => 'fluentd.test',
)5
$logger—>post("follow", { "entryl" => "valuel", "entry2" => 2 });

Executing the script will send the logs to Fluentd.
$ perl test.pl

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

o Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

High- Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

50


http://search.cpan.org/dist/Fluent-Logger/
http://fluentd.org/plugin/

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Data Import from Node.js Applications

The ‘fluent-logger-node’ library is used to post records from Node.js applications to Fluentd.

This article explains how to use the fluent-logger-node library.

Prerequisites

e Basic knowledge of Node.js and NPM
e Basic knowledge of Fluentd
e Node.js 0.6 or higher

Installing Fluentd

Please refer to the following documents to install fluentd.

o Install Fluentd with rpm Package
o Install Fluentd with deb Package
e Install Fluentd with Ruby Gem

e Install Fluentd from source

Modifying the Config File
Next, please configure Fluentd to use the forward Input plugin as its data source.
<source>
type forward
port 24224
</source>
<match fluentd.test.**>
type stdout
</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

Using fluent-logger-node
Obtaining the Most Recent Version

The most recent version of fluent-logger-node can be found here.

o1


https://github.com/fluent/fluent-logger-node
http://search.npmjs.org/#/fluent-logger

A Sample Application

A sample Express app using fluent-logger-node is shown below.

package.json
{
"name": '"node-example",
"version": "0.0.1",
"dependencies": {
"express": "2.5.9",

"fluent-logger": "0.1.0"
X
b

Now use npm to install your dependencies locally:

$ npm install

fluent-logger@0.1.0 ./node_modules/fluent-logger
express02.5.9 ./node_modules/express

|-- 9s@0.4.2

|-- mime@1.2.4

|-- mkdirp@0.3.0

|-- connect@1.8.6 (formidable@1.0.9)

web.js This is the simplest web app.

var express = require('express');
var app = express.createServer (express.logger());

var logger = require('fluent-logger');
logger.configure('fluentd.test', {host: 'localhost', port: 24224});

app.get('/', function(request, response) {
logger.emit('follow', {from: 'userA', to: 'userB'});
response.send('Hello World!');

b;

var port = process.env.PORT || 3000;

app.listen(port, function() {
console.log("Listening on " + port);

b;
Execute the app and go to http://localhost:3000/ in your browser. This will send the logs to Fluentd.
$ node web.js

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

52


http://expressjs.com/

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

e Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

« List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

High-Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

o Monitoring Fluentd

Data Import from Java Applications

The ‘fluent-logger-java’ library is used to post records from Java applications to Fluentd.

This article explains how to use the fluent-logger-java library.

Prerequisites

e Basic knowledge of Java
e Basic knowledge of Fluentd
e Java 6 or higher

Installing Fluentd

Please refer to the following documents to install fluentd.

e Install Fluentd with rpm Package

53


http://fluentd.org/plugin/
http://github.com/fluent/fluent-logger-java

e Install Fluentd with deb Package
e Install Fluentd with Ruby Gem
e Install Fluentd from source

Modifying the Config File
Next, please configure Fluentd to use the forward Input plugin as its data source.

<source>
type forward
port 24224

</source>

<match fluentd.test.**>
type stdout

</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

Using fluent-logger-java

First, please add the following lines to pom.xml. The logger’s revision information can be found in
CHANGES .txt.

<dependencies>

<dependency>
<groupIld>org.fluentd</groupId>
<artifactId>fluent-logger</artifactId>
<version>${logger.version}</version>
</dependency>

</dependencies>

Next, please insert the following lines into your application. Further information regarding the API can be
found here.

import java.util.HashMap;
import java.util.Map;
import org.fluentd.logger.FluentLogger;

public class Main {
private static FluentLogger LOG = FluentLogger.getLogger ("fluentd.test");

public void doApplicationLogic() {
/.
Map<String, String> data = new HashMap<String, String>();
data.put("from", "userA");
data.put("to", "userB");

54


https://github.com/fluent/fluent-logger-java/blob/master/CHANGES.txt
https://github.com/fluent/fluent-logger-java

LOG.log("follow", data);
/7

Executing the script will send the logs to Fluentd.
$ java -jar test.jar

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

e Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

e Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

High-Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

o High-Availability Configurations of Fluentd

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Data Import from Scala Applications

The ‘fluent-logger-scala’ library is used to post records from Scala applications to Fluentd.

This article explains how to use the fluent-logger-scala library.

95


http://fluentd.org/plugin/
http://github.com/oza/fluent-logger-scala

Prerequisites

« Basic knowledge of Scala and sbt
o Basic knowledge of Fluentd
e Scala 2.9.0 or 2.9.1
e sbt 0.12.0 or later
Installing Fluentd

Please refer to the following documents to install fluentd.

e Install Fluentd with rpm Package
e Install Fluentd with deb Package
e Install Fluentd with Ruby Gem

¢ Install Fluentd from source

Modifying the Config File
Next, please configure Fluentd to use the forward Input plugin as its data source.

<source>
type forward
port 24224

</source>

<match fluentd.test.**>
type stdout

</match>

Please restart your agent once these lines are in place.

# for rpm/deb only
$ sudo /etc/init.d/td-agent restart

Using fluent-logger-scala

First, please add the following lines to build.sbt. The logger’s revision information can be found in the
ChangeLog.

resolvers += "Apache Maven Central Repository" at "http://repo.maven.apache.org/maven2/"
libraryDependencies += "org.fluentd" %) "fluent-logger-scala" % "0.3.0"
or

resolvers += "Sonatype Repository" at "http://oss.sonatype.org/content/repositories/releases

libraryDependencies += "org.fluentd" %) "fluent-logger-scala" % "0.3.0"

Next, please insert the following lines into your application. Further information regarding the API can be
found here.

56


https://github.com/oza/fluent-logger-scala/blob/master/ChangeLog
https://github.com/oza/fluent-logger-scala

import org.fluentd.logger.scala.FluentLoggerFactory
import scala.collection.mutable.HashMap

object Sample {
val LOG = FluentLoggerFactory.getLogger("fluentd.test")

def main(args: Array[Stringl): Unit = {

val data = new HashMap[String, String] (#);
data.put("from", "userA");

data.put("to", "userB");

L0G.log("follow", data);

Executing the script will send the logs to Fluentd.

$ sbt
> run

The logs should be output to /var/log/td-agent/td-agent.log or stdout of the Fluentd process via the
stdout Output plugin.

Production Deployments
Output Plugins

Various output plugins are available for writing records to other destinations:

o Examples

e Store Apache Logs into Amazon S3

e Store Apache Logs into MongoDB

e Data Collection into HDFS

o List of Plugin References

e Output to Another Fluentd

o Output to MongoDB or MongoDB ReplicaSet
e Output to Hadoop

e Output to File

e ctc..

High-Availablability Configurations of Fluentd

For high-traffic websites (more than 5 application nodes), we recommend using a high availability configu-
ration of td-agent. This will improve data transfer reliability and query performance.

e High-Availability Configurations of Fluentd

57


http://fluentd.org/plugin/

Monitoring

Monitoring Fluentd itself is also important. The article below describes general monitoring methods for
td-agent.

e Monitoring Fluentd

Free Alternative to Splunk Using Fluentd

Splunk is a great tool for searching logs, but its high cost makes it prohibitive for many teams. In this
article, we present a free and open source alternative to Splunk by combining three open source projects:
Elasticsearch, Kibana, and Fluentd.

5m 15m 1h 6h

Relative | Absolute | Since | [ Auto-

& @ Zoom In @ Zoom Out | ® Query t per 5s | (176 hits)

: 09:51:30 09:52:00 09: 50 09:53:00 09: 50 09:54:00 09:54:30

0fto 200
Fnies=ag5a @timestamp w» 1 @severity » 1 @message
: @severity 2013-06-27T09:56:24.689917+03:00 notice this is a test2
tag . .
= [@F £ notice this is a test4
] imestamp
notice this is a test0

netice this is a test0

Click to See the Demo

Elasticsearch is an open source search engine known for its ease of use. Kibana is an open source Web UI
that makes Elasticsearch user friendly for marketers, engineers and data scientists alike.

By combining these three tools (Fluentd + Elasticsearch + Kibana) we get a scalable, flexible, easy to use
log search engine with a great Web UI that provides an open-source Splunk alternative, all for free!

In this guide, we will go over installation, setup, and basic use of this combined log search solution. The
contents of this article were tested on Mac OS X Mountain Lion. If you’re not familiar with Fluentd,
please learn more about Fluentd first.

Learn More

o8


http://www.splunk.com/
http://www.elasticsearch.org/
http://kibana.org/

Prerequisites
Java for Elasticsearch

Please confirm that your Java version is 6 or higher.

$ java -version

java version "1.6.0_45"

Java(TM) SE Runtime Environment (build 1.6.0_45-b06-451-11M4406)
Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01-451, mixed mode)

Now that we’ve checked for prerequisites, we're now ready to install and set up the three open source tools.

Set Up Elasticsearch

To install Elasticsearch, please download and extract the Elasticsearch package as shown below.

$ curl -0 https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-0.90.0.RC2.tar.gz
$ tar zxvf elasticsearch-0.90.0.RC2.tar.gz
$ cd elasticsearch-0.90.0.RC2/

Once installation is complete, start Elasticsearch.

$ ./bin/elasticsearch -f

Setup Kibana

To install Kibana, download it via the official webpage and extract it. Kibana is a HTML / CSS / JavaScript
application.

$ curl -0 https://download.elasticsearch.org/kibana/kibana/kibana-3.0.0milestoneb.tar.gz
$ tar zxvf kibana-3.0.0Omilestone5.tar.gz
$ cd kibana-3.0.0milestone5/

Once installation is complete, start Kibana and open index.html. You can modify Kibana’s configuration
via config. js.

$ open index.html

Setup Fluentd (td-agent)

In this guide We’'ll install td-agent, the stable release of Fluentd. Please refer to the guides below for detailed
installation steps.

o Debian Package
o RPM Package
o Ruby gem

Next, we’ll install the Elasticsearch plugin for Fluentd: fluent-plugin-elasticsearch.

59



$ /usr/lib64/fluent/ruby/bin/fluent-gem install fluent-plugin-elasticsearch

We'll configure td-agent (Fluentd) to interface properly with Elasticsearch. Please modify /etc/td-agent/td-agent.conf
as shown below:

<source>
type syslog
port 42185
tag syslog
</source>

<source>
type forward
</source>
<match syslog.*x*>
type elasticsearch
logstash_format true

flush_interval 10s # for testing
</match>

fluent-plugin-elasticsearch comes with a logstash_ format option that allows Kibana to search stored event
logs in Elasticsearch.

Once everything has been set up and configured, we’ll start td-agent.

$ sudo /etc/init.d/td-agent start

Setup rsyslogd

In our final step, we’ll forward the logs from your rsyslogd to Fluentd. Please add the following line to your
/etc/rsyslog.conf, and restart rsyslog. This will forward your local syslog to Fluentd, and Fluentd in
turn will forward the logs to Elasticsearch.

*.% 0127.0.0.1:42185
Please restart the rsyslog service once the modification is complete.

$ sudo /etc/init.d/rsyslog restart

Store and Search Event Logs

Once Fluentd receives some event logs from rsyslog and has flushed them to Elasticsearch, you can search
the stored logs using Kibana by accessing http://127.0.0.1:5601/ in your browser.

To manually send logs to Elasticsearch, please use the logger command.
$ logger -t test foobar

When debugging your td-agent configuration, using out_copy + out_stdout will be useful. All the logs
including errors can be found at /etc/td-agent/td-agent.log.

60


http://127.0.0.1:5601/

5m 15m 1h

Relative | Absolute | Since | g Aute-r

(1786 hits)

@timestamp v » 1 @severity » 1 @message

@severity 2013-06-27T09 g notice this is a test2
g

. . this is a testd
¢ @timestamp

this is a test0

this is a test0

<match syslog.*x*>
type copy
<store>
# for debug (see /var/log/td-agent.log)
type stdout
</store>
<store>
type elasticsearch
logstash_format true
flush_interval 10s # for testing
</store>
</match>

Demo Environment

Please access the Kibana Demo Environment from the link below.

¢ Kibana Demo Environment

Conclusion
This article introduced the combination of Fluentd and Kibana (with Elasticsearch) which achieves a free

alternative to Splunk: storing and searching machine logs. The examples provided in this article have not
been tuned.

61


http://demo.kibana.org/

If you will be using these components in production, you may want to modify some of the configurations
(e.g. JVM, Elasticsearch, Fluentd buffer, etc.) according to your needs.

Learn More

e Fluentd Architecture
e Fluentd Get Started

How To Filter Or Modify Data Inside Fluentd (Apache as an Ex-
ample)

In this article, we introduce several common data manipulation challenges faced by our users (such as filtering
and modifying data) and explain how to solve each task using one or more Fluentd plugins.

Scenario: Filtering Data by the Value of a Field

Let’s suppose our Fluentd instances are collecting data from Apache web server logs via in_ tail. Our goal
is to filter out all the 200 requests.

Solution: Use fluent-plugin-grep

fluent-plugin-grep is a plugin that can “grep” data according to the different fields within Fluentd events.

If our events looks like

{
"code": 200,
"url": "http://yourdomain.com/page.html",
"size": 2344,
"referer": "http://www.treasuredata.com"
}

then we can filter out all the requests with status code 200 as follows:

<match apache.*x*>
type grep
input_key code
exclude ~200$
add_tag_prefix filtered
</match>

By using the add_tag_prefix option, we can prepend a tag in front of filtered events so that they can be
matched to a subsequent section. For example, we can send all logs with non-200 status codes to Treasure
Data, as shown below:

62


https://github.com/sonots/fluent-plugin-grep
http://www.treasuredata.com
http://www.treasuredata.com

<match apache.*x*>
type grep
input_key code
exclude ~200$
add_tag_prefix filtered
</match>
<match filtered.apache.**>
type td_lot
apikey XXXXX

</match>

fluent-plugin-grep can filter based on multiple fields as well. The config below keeps all requests with
status code 4xx that are NOT referred from yourdomain.com (a real world use case: figuring out how many
dead links there are in the wild by filtering out internal links)

<match apache.*x*>
type grep
regexpl code ~4\d\d$
excludel referer “https?://yourdomain.com
add_tag_prefix external_dead_links
</match>

Scenario: Adding a New Field (such as hostname)
When collecting data, we often need to add a new field or change an existing field in our log data. For
example, many Fluentd users need to add the hostname of their servers to the Apache web server log data

in order to compute the number of requests handled by each server (i.e., store them in MongoDB/HDFS
and run GROUP-BYs).

Solution: Use fluent-plugin-record-modifier

fluent-plugin-record-modifier can add a new field to each data record.

If our events looks like
{"code":200, "url":"http://yourdomain.com", "size":1232}
then we can add a new field with the hostname information as follows:

<match foo.bar>
type record_modifier
gen_host ${hostname}
tag with_hostname
</match>

<match with_hostname>
</match>

63


https://github.com/repeatedly/fluent-plugin-record-modifier

The modified events now look like
{"gen_host": "our_server", code":200, "url":"http://yourdomain.com", "size":1232}

NOTE: The ${hostname} placeholder is powered by fluent-mixin-config-placeholder. It inlines the host name
of the server that the Fluentd instance is running on (in this example, our server’s name is “our_server”).

Splunk-like Grep-and-Alert-Email System Using Fluentd

Splunk is a great tool for searching logs. One of its key features is the ability to “grep” logs and send alert
emails when certain conditions are met.

In this little “how to” article, we will show you how to build a similar system using Fluentd. More specifically,
we will create a system that sends an alert email when it detects a 5xx HTTP status code in an Apache
access log.

By the way, Splunk happens to be quite expensive. If you're interested in a free alternative, check out our
article here.

Installing the Needed Plugins

Install Fluend if you haven’t yet.

Please install fluent-plugin-grepcounter by running:
$ gem install fluent-plugin-grepcounter
Next, please install fluent-plugin-mail by running:

$ gem install fluent-plugin-mail

Configuration
Configuration File: Soup to Nuts

Here is an example configuration file. It’s a bit long, but each part is well-commented, so don’t be afraid.

<source>
type http #This is for testing
port 8888

</source>

<source>
type tail
format apache2
path /var/log/apache2/access.log #This is the location of your Apache log
tag apache.access
</source>

<match apache.access>
type grepcounter

64


https://github.com/tagomoris/fluent-mixin-config-placeholders
http://www.splunk.com/

count_interval 3 #Time window to grep and count the # of events

input_key code #We look at the (http status) "code" field

regexp ~5\d\d$ #This regexp matches 5xx status codes

threshold 1 #The # of events to trigger emitting an output

add_tag_prefix error_bxx #The output event's tag will be error_bxx.apache.access
</match>

<match error_bxx.apache.access>
# The event that comes here looks like
#{
# '"count":1,
# '"input_tag":"error_bxx.apache.access",
# '"input_tag_last":"access",
# '"message":[500]
#}

type copy #Copying events, one to send to stdout, another for email alerts

<store>
type stdout
</store>

<store>
type mail
host smtp.gmail.com #This is for Gmail and Google Apps. Any SMTP server should work
port 587 #This is the port for smtp.gmail.com
user kiyoto@treasure-data.com #I work here! Use YOUR EMAIL.
password XXXXXX #I can't tell you this! Use YOUR PASSWORD!
enable_starttls_auto true
from YOUR_SENDER_EMAIL_HERE
to YOUR_RECIPIENT_EMAIL_HERE
subject [URGENT] APACHE 5XX ERROR
message Total 5xx error count: %s\n\nPlease check your Apache webserver ASAP
message_out_keys count #The value of 'count' will be substituted into %s above.
</store>
</match>

Save the above into your own configuration file (We assume it’s called test.conf for the rest of this
page). Make sure your SMTP is configured correctly (otherwise, you will get a warning when you run the

program).

What the Configuration File Does

The config above does three things:

1. Sets up Fluentd to tail an Apache log file (located at /var/log/apache2/access.log).

2. Every 3 seconds, it counts the number of events whose “code” field is 5xx. If the number is at least 1
(because of threshold 1), emit an event with the tag error_5xx.apache.access. All of this is done
by fluent-plugin-grepcounter.

3. Sends an email to dev@treasure-data.com (and also outputs to STDOUT for debugging & testing) for
each event with the tag error_b5xx.apache.access.

We can do all this without writing a single line of code or paying a dime!

65



Testing

Just run
$ fluentd -c test.conf

to start Fluentd.

To trigger the alert email, you can either manually append a 5xx error log line to your Apache log or visit
(on the same server)

http://localhost:8888/apache/access?json={"code":"500"}

(This uses the in_http plugin). You should be receiving an alert email with the subject line “[URGENT)]
APACHE 5XX ERROR” in your inbox right about now!

What’s Next?

Admittedly, this is a contrived example. In reality, you would set the threshold higher. Also, you might be
interested in tracking 4xx pages as well. In addition to Apache logs, Fluentd can handle Nginx logs, syslogs,
or any single- or multi-lined logs.

You can learn more about Fluentd and its plugins by

e exploring other plugins

e browsing recipes

o asking questions on the mailing list
e signing up for our newsletters

Cloud Big Data Analytics with Treasure Data

This article explains how to use Fluentd’s Treasure Data Output plugin to aggregate semi-structured logs
into Treasure Data (TD), which offers Cloud Data Service.

Background
Fluentd is an advanced open-source log collector originally developed at Treasure Data, Inc. Fluentd is
specifically designed to solve the big-data log collection problem.

Treasure Data provides Cloud Data Service, which Fluentd users can use to easily store and analyze data on
the cloud. Fluentd is designed to flexibly connect with many systems via plugins, but Treasure Data should
be your top choice if you don’t want to spend engineering resources maintaining your backend infrastructure.

This article will show you how to use Fluentd to receive data from HTTP and stream it into TD.

66


http://fluentd.org/plugin/
https://groups.google.com/forum/#!forum/fluentd
http://go.treasuredata.com/Fluentd_education
http://fluentd.org/
http://github.com/treasure-data/fluent-plugin-td/
http://fluentd.org/
http://go.treasuredata.com/fluentd
http://go.treasuredata.com/fluentd
http://fluentd.org/

Architecture

The figure below shows the high-level architecture.

Web logs Treasure Agent Data Storage Treasure Viewer Free, simple
App logs Lightweight streaming data Scalable, adaptable, extensible, Explore data in real-time with export to cloud
Mobile collector for real-time upload multi-tenant, columnar storage simple drag and drop analysis or local systems:
Sensor system
Direct Query RDBMS
RDBME Bulk Import Management Console Use familiar SQL syntax to join, Excel®
Excel From databases, apps and other  Web interface for monitoring aggregate, and analyze data Amazon
E:‘; systems via fast, parallel upload resources, access control, and Google
ca support tickets Bl Tool Connectivity

Visualize with your existing tools,
such as Tableau, Metric Insights,

And many
more... Excel and others
Flatmonthlyrate || Managedservice || Fastsetup || Secure || LiveSupport
Install

For simplicity, this article will describe how to set up an one-node configuration. Please install the following
software on the same node.

e Fluentd
e TD Output Plugin

The TD Output plugin is included in Fluentd’s deb/rpm package (td-agent) by default. If you want to use
Ruby Gems to install the plugin, please use gem install fluent-plugin-td.

o Debian Package
o RPM Package
e Ruby gem

Signup

Next, please sign up to TD and get your apikey using the td apikey:show command.

$ td account -f

Enter your Treasure Data credentials.
Email: your.email@gmail.com

Password (typing will be hidden):

$ td apikey:show
kdfasklj218dsakfdas0983120

67


http://fluentd.org/
https://github.com/treasure-data/fluent-plugin-td
https://console.treasure-data.com/users/sign_up

Fluentd Configuration

Let’s start configuring Fluentd. If you used the deb/rpm package, Fluentd’s config file is located at /etc/td-
agent/td-agent.conf. Otherwise, it is located at /etc/fluentd/fluentd.conf.

HTTP Input

For the input source, we will set up Fluentd to accept records from HTTP. The Fluentd configuration file
should look like this:

<source>
type http
port 8888

</source>

Treasure Data Output

The output destination will be Treasure Data. The output configuration should look like this:

# Treasure Data output

<match td.*.x*>
type tdlog
apikey YOUR_API_KEY_IS_HERE
auto_create_table
buffer_type file
buffer_path /var/log/td-agent/buffer/td
use_ssl true

</match>

The match section specifies the regexp used to look for matching tags. If a matching tag is found in a log,
then the config inside <match>...</match> is used (i.e. the log is routed according to the config inside).

Test

To test the configuration, just post the JSON to Fluentd. Sending a USRI signal flushes Fluentd’s buffer
into TD.

$ curl -X POST -d 'json={"action":"login","user":2}' \
http://localhost:8888/td.testdb.www_access
$ kill -USR1 “cat /var/run/td-agent/td-agent.pid”

Next, please use the td tables command. If the count is not zero, the data was imported successfully.

$ td tables

o Fomm o Fo—— Fmm— +
| Database | Table | Type | Count | Schema |
o Fommmm o= o o +
| testdb | www_access | log | 1|
o e o o Fommmm +

68



You can now issues queries against the imported data.

$ td query -w -d testdb \

"SELECT COUNT(1) AS cnt FROM www_access"
queued. ..
started at 2012-04-10T23:44:41Z
2012-04-10 23:43:12,692 Stage-1 map = 0%, reduce = 0}
2012-04-10 23:43:18,766 Stage-1 map 100%, reduce = 0%
2012-04-10 23:43:32,973 Stage-1 map 100%, reduce = 100%
Status ! success
Result

NOTE: It’s not advisable to send sensitive user information to the cloud. To assist with this need, out_ tdlog
comes with some anonymization systems. Please see the Treasure Data plugin article for details.

Conclusion

Fluentd + Treasure Data gives you a data collection and analysis system in days, not months. Treasure
Data is a useful solution if you don’t want to spend engineering resources maintaining the backend storage
and analytics infrastructure.

Learn More

e Fluentd Architecture

e Fluentd Get Started

e Treasure Data: Cloud Data Service
e Treasure Data: Documentation

Store Apache Logs into Amazon S3

This article explains how to use Fluentd’s Amazon S3 Output plugin (out s3) to aggregate semi-structured
logs in real-time.

Background

Fluentd is an advanced open-source log collector originally developed at Treasure Data, Inc. One of the main
objectives of log aggregation is data archiving. Amazon S3, the cloud object storage provided by Amazon,
is a popular solution for data archiving.

This article will show you how to use Fluentd to import Apache logs into Amazon S3.

69


http://go.treasuredata.com/fluentd
http://docs.treasuredata.com/
http://fluentd.org/
http://fluentd.org/
http://www.treasuredata.com/
http://aws.amazon.com/s3/
http://fluentd.org/

Mechanism

Fluentd does 3 things:

1. It continuously “tails” the access log file.
2. It parses the incoming log entries into meaningful fields (such as ip, path, etc.) and buffers them.
3. It writes the buffered data to Amazon S3 periodically.

Install

For simplicity, this article will describe how to set up an one-node configuration. Please install the following
software on the same node.

e Fluentd

e Amazon S3 Output Plugin

e Your Amazon Web Services Account

o Apache (with the Combined Log Format)

The Amazon S3 Output plugin is included in the latest version of Fluentd’s deb/rpm package. If you want
to use Ruby Gems to install the plugin, please use gem install fluent-plugin-s3.

e Debian Package
e RPM Package
e Ruby gem

Configuration

Let’s start configuring Fluentd. If you used the deb/rpm package, Fluentd’s config file is located at /etc/td-
agent/td-agent.conf. Otherwise, it is located at /etc/fluentd/fluentd.conf.

Tail Input

For the input source, we will set up Fluentd to track the recent Apache logs (typically found at
/var/log/apache2/access_log) The Fluentd configuration file should look like this:

<source>
type tail
format apache2
path /var/log/apache2/access_log
pos_file /var/log/td-agent/apache2.access_log.pos
tag s3.apache.access
</source>

NOTE: Please make sure that your Apache outputs are in the default ‘combined’ format. format apache?2
cannot parse custom log formats. Please see the in_ tail article for more information.

Let’s go through the configuration line by line.

1. type tail: The tail Input plugin continuously tracks the log file. This handy plugin is included in
Fluentd’s core.

70


http://fluentd.org/

2. format apache2: Uses Fluentd’s built-in Apache log parser.

3. path /var/log/apache2/access_log: The location of the Apache log. This may be different for your
particular system.

4. tag s3.apache.access: s3.apache.access is used as the tag to route the messages within Fluentd.

That’s it! You should now be able to output a JSON-formatted data stream for Fluentd to process.

Amazon S3 Output

The output destination will be Amazon S3. The output configuration should look like this:

<match s3.*.%>
type s3

aws_key_id YOUR_AWS_KEY_ID
aws_sec_key YOUR_AWS_SECRET/KEY
s3_bucket YOUR_S3_BUCKET NAME
path logs/

buffer_path /var/log/td-agent/s3

time_slice_format %Y%m%d%H
time_slice_wait 10m

utc

buffer_chunk limit 256m
</match>

The match section specifies the regexp used to look for matching tags. If a matching tag is found in a log,
then the config inside <match>. ..</match> is used (i.e. the log is routed according to the config inside). In
this example, the s3.apache.access tag (generated by tail) is always used.

Test

To test the configuration, just ping the Apache server. This example uses the ab (Apache Bench) program.
$ ab -n 100 -c 10 http://localhost/

Then, log into your AWS Console and look at your bucket.

WARNING: By default, files are created on an hourly basis (around xx:10). This means that when
you first import records using the plugin, no file is created immediately. The file will be created when
the time_slice_format condition has been met. To change the output frequency, please modify the
time_slice_format value. To write files every minute, please use %Y/%m%d%H%M for the time_slice_format.

Conclusion

Fluentd + Amazon S3 makes real-time log archiving simple.

71


https://console.aws.amazon.com/s3/home

Learn More

e Fluentd Architecture
e Fluentd Get Started
e Amazon S3 Output plugin

Store Apache Logs into MongoDB

This article explains how to use Fluentd’s MongoDB Output plugin (out mongo) to aggregate semi-
structured logs in real-time.

Background

Fluentd is an advanced open-source log collector originally developed at Treasure Data, Inc. Because Flu-
entd handles logs as semi-structured data streams, the ideal database should have strong support for semi-
structured data. There are several candidates that meet this criterion, but we believe MongoDB is the
market leader.

MongoDB is an open-source, document-oriented database developed at 10gen, Inc. It is schema-free and
uses a JSON-like format to manage semi-structured data.

This article will show you how to use Fluentd to import Apache logs into MongoDB.

Mechanism

The figure below shows how things will work.

~8 Apache

' * tail
.I'var.-'lug_.’apachelfﬂ'CCESS Iug —

: \\ .......
write . mongo DB

."va r/log/apache?/ ACCESS_ Ing —_—
f tail

. !. Apache

Fluentd does 3 things:

72


http://fluentd.org/
http://fluentd.org/
http://www.treasuredata.com/
http://www.mongodb.org/
http://www.10gen.com/
http://fluentd.org/

1. It continuously “tails” the access log file.
2. Tt parses the incoming log entries into meaningful fields (such as ip, path, etc.) and buffers them.
3. It writes the buffered data to MongoDB periodically.

Install

For simplicity, this article will describe how to set up an one-node configuration. Please install the following
software on the same node.

Fluentd

MongoDB Output Plugin

MongoDB

o Apache (with the Combined Log Format)

The MongoDB Output plugin is included in the latest version of Fluentd’s deb/rpm package. If you want
to use Ruby Gems to install the plugin, please use gem install fluent-plugin-mongo.

e Debian Package
e RPM Package
o Ruby gem

For MongoDB, please refer to the following downloads page.

e MongoDB Downloads

Configuration

Let’s start configuring Fluentd. If you used the deb/rpm package, Fluentd’s config file is located at /etc/td-
agent/td-agent.conf. Otherwise, it is located at /etc/fluentd/fluentd.conf.

Tail Input

For the input source, we will set up Fluentd to track the recent Apache logs (typically found at
/var/log/apache2/access_log) The Fluentd configuration file should look like this:

<source>
type tail
format apache2
path /var/log/apache2/access_log
pos_file /var/log/td-agent/apache2.access_log.pos
tag mongo.apache.access
</source>

NOTE: Please make sure that your Apache outputs are in the default ‘combined’ format. format apache2
cannot parse custom log formats. Please see the in_ tail article for more information.

Let’s go through the configuration line by line.

1. type tail: The tail Input plugin continuously tracks the log file. This handy plugin is included in
Fluentd’s core.

73


http://fluentd.org/
http://www.mongodb.org/
http://www.mongodb.org/downloads

2. format apache2: Uses Fluentd’s built-in Apache log parser.
3. path /var/log/apache2/access_log: The location of the Apache log. This may be different for your
particular system.

4. tag mongo.apache.access: mongo.apache.access is used as the tag to route the messages within
Fluentd.

That’s it! You should now be able to output a JSON-formatted data stream for Fluentd to process.

MongoDB Output
The output destination will be MongoDB. The output configuration should look like this:

<match mongo.*.x*>
# plugin type
type mongo

# mongodb db + collection
database apache
collection access

# mongodb host + port
host localhost
port 27017

# interval
flush_interval 10s
</match>

The match section specifies the regexp used to look for matching tags. If a matching tag is found in a log,
then the config inside <match>. ..</match> is used (i.e. the log is routed according to the config inside). In
this example, the mongo.apache.access tag (generated by tail) is always used.

The ** in match.** matches zero or more period-delimited tag parts (e.g. match/match.a/match.a.b).

flush__interval specifies how often the data is written to MongoDB. The other options specify MongoDB’s
host, port, db, and collection.

NOTE: For additional configuration parameters, please see the MongoDB Output plugin article. If you are
using ReplicaSet, please see the MongoDB ReplicaSet Output plugin article.

Test

To test the configuration, just ping the Apache server. This example uses the ab (Apache Bench) program.
$ ab -n 100 -c 10 http://localhost/

Then, access MongoDB and see the stored data.

$ mongo

> use apache
> db["access"].findOne () ;

{"_id" : ObjectId("4ed1ed3a340765ce73000001"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path'
{ "_id" : ObjectId("4ed1ed3a340765ce73000002"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path'
{ "_id" : ObjectId("4ed1ed3a340765ce73000003"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path'

74



Conclusion

Fluentd + MongoDB makes real-time log collection simple, easy, and robust.

Learn More

e Fluentd Architecture

e Fluentd Get Started

e MongoDB Output Plugin

e MongoDB ReplicaSet Output Plugin

Fluentd + HDF'S: Instant Big Data Collection

This article explains how to use Fluentd’s WebHDFS Output plugin to aggregate semi-structured logs into
Hadoop HDFS.

Background

Fluentd is an advanced open-source log collector originally developed at Treasure Data, Inc. Fluentd is
specifically designed to solve the big-data log collection problem. A lot of users are using Fluentd with
MongoDB, and have found that it doesn’t scale well for now.

HDFS (Hadoop) is a natural alternative for storing and processing a huge amount of data, but it didn’t have
an accessible API other than its Java library until recently. From Apache 1.0.0, CDH3u5, or CDH4 onwards,
HDFS supports an HTTP interface called WebHDFS.

This article will show you how to use Fluentd to receive data from HTTP and stream it into HDF'S.

Architecture

The figure below shows the high-level architecture.

Hadoop

— BT

out webhdfs

direct transfer DataNode

75


http://fluentd.org/
http://github.com/fluent/fluent-plugin-webhdfs/
http://fluentd.org/
http://www.treasuredata.com/
http://fluentd.org/

Install

For simplicity, this article will describe how to set up an one-node configuration. Please install the following
software on the same node.

o Fluentd
o WebHDFS Output Plugin (out_ webhdfs)
o HDFS (Apache 1.0.0, CDH3u5 or CDH4 onwards)

The WebHDFS Output plugin is included in the latest version of Fluentd’s deb/rpm package (v1.1.10 or
later). If you want to use Ruby Gems to install the plugin, please use gem install fluent-plugin-webhdfs.

e Debian Package

o RPM Package

o For CDH, please refer to the downloads page (CDH3u5 and CDH4 onwards)
o Ruby gem

Fluentd Configuration

Let’s start configuring Fluentd. If you used the deb/rpm package, Fluentd’s config file is located at /etc/td-
agent/td-agent.conf. Otherwise, it is located at /etc/fluentd/fluentd.conf.

HTTP Input

For the input source, we will set up Fluentd to accept records from HTTP. The Fluentd configuration file
should look like this:

<source>
type http
port 8888

</source>

WebHDFS Output
The output destination will be WebHDFS. The output configuration should look like this:

<match hdfs.*.x*>
type webhdfs
host namenode.your.cluster.local
port 50070
path /log/%Y/m%d_%H/access.log.${hostname}
flush_interval 10s
</match>

The match section specifies the regexp used to look for matching tags. If a matching tag is found in a log,
then the config inside <match>...</match> is used (i.e. the log is routed according to the config inside).

flush__interval specifies how often the data is written to HDFS. An append operation is used to append
the incoming data to the file specified by the path parameter.

Placeholders for both time and hostname can be used with the path parameter. This prevents multiple
Fluentd instances from appending data to the same file, which must be avoided for append operations.

Other options specify HDFS’s NameNode host and port.

76


http://fluentd.org/
https://github.com/fluent/fluent-plugin-webhdfs/
https://ccp.cloudera.com/display/SUPPORT/CDH+Downloads

HDFS Configuration

Append operations are not enabled by default. Please put these configurations into your hdfs-site.xml file
and restart the whole cluster.

<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>

</property>

<property>
<name>dfs.support.append</name>
<value>true</value>

</property>

<property>
<name>dfs.support.broken.append</name>

<value>true</value>
</property>

Please confirm that the HDFS user has write access to the path specified as the WebHDF'S output.

Test

To test the configuration, just post the JSON to Fluentd (we use the curl command in this example). Sending
a USRI signal flushes Fluentd’s buffer into WebHDFS.

$ curl -X POST -d 'json={"action":"login","user":2}' \
http://localhost:8888/hdfs.access.test
$ kill -USR1 “cat /var/run/td-agent/td-agent.pid”

We can then access HDFS to see the stored data.

$ sudo -u hdfs hadoop fs -1lsr /log/
drwxr-xr-x - 1 supergroup 0 2012-10-22 09:40 /log/20121022_14/access.log.dev

Conclusion

Fluentd + WebHDFS make real-time log collection simple, robust and scalable! [@tagomoris|(http://github.com/tagomoris)
has already been using this plugin to collect 20,000 msgs/sec, 1.5 TB/day without any major problems for
several months now.

Learn More

e Fluentd Architecture

e Fluentd Get Started

o WebHDFS Output Plugin

e Slides: Fluentd and WebHDFS

7


http://www.slideshare.net/tagomoris/fluentd-and-webhdfs

Store Apache Logs into Riak

This article explains how to use Fluentd’s Riak Output plugin (out_ riak) to aggregate semi-structured logs
in real-time.

e o7 rakdsd

fluent-plugin-s3

ﬂuent-plugi“"iakf'ﬁ ri CI k

Mvarflog/apache2/ ECEESS_l'Dg —_— I
' 4 tail

~ i.. Apache

fluentd

Prerequisites

. An OSX or Linux machine

. Fluentd is installed (installation guide]
. Riak is installed

. An Apache web server log

=W N =

Installing the Fluentd Riak Output Plugin

The Riak output plugin is used to output data from a Fluentd node to a Riak node.

Rubygems Users

Rubygems users can run the command below to install the plugin:

$ gem install fluent-plugin-riak

78


https://github.com/kuenishi/fluent-plugin-riak
https://github.com/kuenishi/fluent-plugin-riak

td-agent Users

If you are using td-agent, run /usr/lib/fluent/ruby/bin/fluent-gem install fluent-plugin-riak to
install the Riak output plugin.

Configuring Fluentd

Create a configuration file called fluent.conf and add the following lines:

<source>
type tail
format apache2
path /var/log/apache2/access_log
pos_file /var/log/fluentd/apache2.access_log.pos
tag riak.apache
</source>

<match riak.**>

type riak

buffer_type memory

flush_interval bs

retry_limit 5

retry_wait 1s

nodes localhost:8087 # Assumes Riak is running locally on port 8087
</match>

The <source>...</source> section tells Fluentd to tail an Apache2-formatted log file located at
/var/log/apache2/access_log. Each line is parsed as an Apache access log event and tagged with the
riak.apache label.

The <match riak.**>...</match> section tells Fluentd to look for events whose tags start with riak. and
send all matches to a Riak node located at localhost:8087. You can send events to multiple nodes by
writing nodes hostl host2 host3 instead.

Testing

Launch Fluentd with the following command:
$ fluentd -c fluentd.conf

NOTE: Please confirm that you have the file access permissions to (1) read the Apache log file and (2) write
to /var/log/fluentd/apache2.access_log.pos (sudo-ing might help).

You should now see data coming into your Riak cluster. We can make sure that everything is running
smoothly by hitting Riak’s HT'TP API:

$ curl http://localhost:8098/buckets/fluentlog/keys?keys=true
{"keys":["2014-01-23-d30b0698-b9de-4290-b8be-ab66555497078", ...]}
$ curl http://localhost:8098/buckets/fluentlog/keys/2014-01-23-d30b0698-b9de-4290-b8be-a66555497078
L

{

"tag": "riak.apache",

79



"time": "2004-03-08T01:23:54Z",
"host": "64.242.88.10",

"user": null,

"method": "GET",

"path": "/twiki/bin/statistics/Main",
"code": 200,

"size": 808,

"referer": null,

"agent": null

There it is! (the response JSON is formatted for readability)

Learn More

o Fluentd Architecture
e Fluentd Get Started
e Riak Output Plugin

Collecting Log Data from Windows

In this article, we explain how to get started with collecting data from Windows machines.

As of v10, Fluentd does NOT support Windows. However, there are times when you must collect data
streams from Windows machines. For example:

1. Tailing log files on Windows: collect and analyze log data from a Windows application.
2. Collecting Windows Event Logs: collect event logs from your Windows servers for system analysis,
compliance checking, etc.

This setup has been tested on a 64-bit Windows 8 machine.

Prerequisites

1. nxlog, an open source log management tool that runs on Windows.
2. A Linux server (we assume Ubuntu 12 for this article)

Setup
Set up a Linux server with rsyslogd and Fluentd

1. Get hold of a Linux server. In this example, we assume it is Ubuntu.

2. Make sure it has ports open for UDP. In the following example, we assume port 5140 is
open.

3. Install td-agent. (See here for various ways to install Fluentd /Treasure Agent)
4. Edit td-agent’s configuration file located at /etc/td-agent/td-agent.conf and add the following

lines

80


http://github.com/kuenishi/fluent-plugin-riak
http://nxlog.org
http://docs.fluentd.org/articles/install-by-deb

<source>
type syslog
port 5140
tag windowslog
</source>
<match windowslog.**>
type stdout
</match>

The above code listens to port 5140 (UDP) and outputs the data to stdout (which is piped to ~/var/log/td-

5. Start td-agent by running sudo service td-agent start

Set up nxlog on Windows

1. Follow this link and download a copy of nxlog onto the Windows machine you want to collect log data
from. Open the downloaded installer and follow the instructions. By default, it should be installed in
C:\Program Files (x86)\nxlog

2. Create an nxlog config file as follows and save it as nxlog. conf:

define ROOT C:\Program Files (x86)\nxlog
Moduledir %RO0T%\modules

CacheDir %R0O0T%\data

Pidfile %RO0T%\data\nxlog.pid

SpoolDir %R00T%\data

LogFile %R00T%\data\nxlog.log

<Extension syslog>

Module xm_syslog
</Extension>
<Extension json>

Module Xm_json
</Extension>

<Input in>
Module im_file
File "<PATH TO THE LOG FILE YOU WANT TO TAIL>"
SavePos TRUE
InputType LineBased
</Input>
<Processor t>
Module pm_transformer
OutputFormat syslog_bsd
Exec $Message=(": "+$raw_event);
</Processor>
<Output out>
Module om_udp
Host 54.200.236.1 # Your host name here
Port 5140
</0Output>
<Route r>
Path in => t => out
</Route>

This configuration will send each line of the log file (see the File parameter inside <Input
in&gt...</Input>) as a syslog message to a remote Fluentd /Treasure Agent instance.

81


http://nxlog.org/download

Test

1. Go to nxlog’s directory (in Powershell or Command Prompt) and run the following command:
\nxlog.exe -f -c <path to nxlog.conf>

The “-f” option runs nxlog in the foreground (this is for testing). If this is for production, you would
want to turn it into a Windows Service.

2. Once nxlog is running, add a new line “Windows is awesome” into the tailed file, and save it.

3. Now, go to the Linux server and run

$ sudo tail -f /var/log/td-agent/td-agent.log

2014-01-22 08:26:29 +0000 windowslog.user.notice: {"host":"portly","ident":"", "message":"Windows is ¢

4. You successfully sent data from a Windows machine to a remote Fluentd instance running on Linux.

Next Step
This example showed that we can collect data from a Windows machine and send it to a remote Fluentd
instance. However, the data is not terribly useful because each line of data is placed into the “message”

field as unstructured text. For production purposes, you would probably want to write a plugin/extend the
syslog plugin so that you can parse the “message” field in the event.

Learn More

e Fluentd Architecture
e Fluentd Get Started

Cloud Data Logger by Raspberry Pi

Raspberry Pi is a credit-card-sized single-board computer. Because it is low-cost and easy to equip with
various types of sensors, using Raspberry Pi as a cloud data logger is one of its ideal use cases.

82


http://www.raspberrypi.org/

TREASURE

Cloud Data Service

This article introduces how to transport sensor data from Raspberry Pi to the cloud, using Fluentd as the
data collector. For the cloud side, we’ll use the Treasure Data cloud data service as an example, but you
can use any cloud service in its place.

Install Raspbian

Raspbian is a free operating system based on Debian, optimized for the Raspberry Pi. Please install Raspbian
on your Raspberry Pi by following the instructions in the blog post below:

e Getting Started with Raspberry Pi: Installing Raspbian

Install Fluentd

Next, we’ll install Fluentd on Raspbian. Raspbian bundles Ruby 1.9.3 by default, but we need the extra
development package to install Fluentd.

$ sudo aptitude install ruby-dev
We'll now install Fluentd and the necessary plugins.

$ sudo gem install fluentd
$ sudo fluent-gem install fluent-plugin-td

83


http://go.treasuredata.com/fluentd
http://www.raspbian.org/
http://www.andrewmunsell.com/blog/getting-started-raspberry-pi-install-raspbian

Configure and Launch Fluentd
Please sign up to Treasure Data from the sign up page. Its free plan lets you store and analyze millions of
data points. You can get your account’s API key from the users page.

Please prepare the fluentd.conf file with the following information, including your API key.

<match td.x*.*>
type tdlog
apikey YOUR_API_KEY_HERE
auto_create_table
buffer_type file
buffer_path /home/pi/fluentd/td
</match>
<source>
type http
port 8888
</source>
<source>
type forward
</source>

Finally, please launch Fluentd via your terminal.

$ fluentd -c fluent.conf

Upload Test

To test the configuration, just post a JSON message to Fluentd via HTTP.

$ curl -X POST -d 'json={"sensor1":3123.13,"sensor2":321.3}' \
http://localhost:8888/td.testdb.raspberrypi

NOTE: If you’re using Python, you can use Fluentd’s python logger library.

Now, access the databases page to confirm that your data has been uploaded to the cloud properly.
e Treasure Data: List of Databases

You can now issue queries against the imported data.
e Treasure Data: New Query

For example, these queries calculate the average sensorl value and the sum of sensor2 values.

SELECT AVG(sensorl) FROM raspberrypi;
SELECT SUM(sensor2) FROM raspberrypi;

84


https://console.treasuredata.com/users/sign_up
https://console.treasuredata.com/users/current
https://console.treasuredata.com/databases
https://console.treasuredata.com/query_forms/new

Conclusion

Raspberry Pi is an ideal platform for prototyping data logger hardware. Fluentd helps Raspberry Pi transfer
the collected data to the cloud easily and reliably.

Learn More

e Fluentd Architecture
o Fluentd Get Started

Collecting GlusterFS Logs with Fluentd

This article shows how to use Fluentd to collect GlusterF'S logs for analysis (search, analytics, troubleshoot-
ing, etc.)

Background

GlusterFS is an open source, distributed file system commercially supported by Red Hat, Inc. Each node
in GlusterFS generates its own logs, and it’s sometimes convenient to have these logs collected in a central
location for analysis (e.g., When one GlusterF'S node went down, what was happening on other nodes?).

Fluentd is an open source data collector for high-volume data streams. It’s a great fit for monitoring
GlusterFS clusters because:

1. Fluentd supports GlusterF'S logs as a data source.

2. Fluentd supports various output systems (e.g., Elasticsearch, MongoDB, Treasure Data, etc.) that can
help GlusterF'S users analyze the logs.

The rest of this article explains how to set up Fluentd with GlusterFS. For this example, we chose Elastic-
search as the backend system.

Setting up Fluentd on GlusterFS Nodes
Step 1: Installing Fluentd

First, we’ll install Fluentd using the following command:
$ curl -L http://toolbelt.treasuredata.com/sh/install-redhat.sh | sh
Next, we’ll install the Fluentd plugin for GlusterFS:

$ sudo /usr/1ib64/fluent/ruby/bin/fluent-gem install fluent-plugin-glusterfs
Fetching: fluent-plugin-glusterfs-1.0.0.gem (100%)

Successfully installed fluent-plugin-glusterfs-1.0.0

1 gem installed

Installing ri documentation for fluent-plugin-glusterfs-1.0.0...

Installing RDoc documentation for fluent-plugin-glusterfs-1.0.0...

85


http://gluster.org

Step 2: Making GlusterF'S Log Files Readable by Fluentd

By default, only root can read the GlusterFS log files. We'll allow others to read the file.

$ 1s -alF /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

—ry-—-—--- 1 root root 1385 Feb 3 07:21 2014 /var/log/glusterfs/etc-glusterfs-glusterd.vol.log
$ sudo chmod +r /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

$ 1s -alF /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

-rw-r--r-- 1 root root 1385 Feb 3 07:21 2014 /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

Now, modify Fluentd’s configuration file. It is located at /etc/td-agent/td-agent.conf.
NOTE: td-agent is Fluentd’s rpm/deb package maintained by Treasure Data
This is what the configuration file should look like:

$ sudo cat /etc/td-agent/td-agent.conf

<source>
type glusterfs_log
path /var/log/glusterfs/etc-glusterfs-glusterd.vol.log
pos_file /var/log/td-agent/etc-glusterfs-glusterd.vol.log.pos
tag glusterfs_log.glusterd
format /~(7<message>.*)$/

</source>

<match glusterfs_log.**>
type forward
send_timeout 60s
recover_wait 10s
heartbeat_interval 1s
phi_threshold 8
hard_timeout 60s

<server>
name logserver
host 172.31.10.100
port 24224
weight 60
</server>

<secondary>
type file
path /var/log/td-agent/forward-failed
</secondary>
</match>

NOTE: the ... section is for failover (when the aggregator instance at 172.31.10.100:24224 is unreachable).
Finally, start td-agent. Fluentd will started with the updated setup.

$ sudo service td-agent start
Starting td-agent: [ 0K 1]

86


http://docs.treasuredata.com/articles/td-agent

Step 3: Setting Up the Aggregator Fluentd Server
We’ll now set up a separate Fluentd instance to aggregate the logs. Again, the first step is to install Fluentd.
$ curl -L http://toolbelt.treasuredata.com/sh/install-redhat.sh | sh

We’ll set up the node to send data to Elasticsearch, where the logs will be indexed and written to local disk
for backup.

First, install the Elasticsearch output plugin as follows:
$ sudo /usr/lib64/fluent/ruby/bin/fluent-gem install fluent-plugin-glusterfs
Then, configure Fluentd as follows:

$ sudo cat /etc/td-agent/td-agent.conf
<source>

type forward

port 24224

bind 0.0.0.0
</source>

<match glusterfs_log.glusterd>
type copy

#local backup
<store>

type file

path /var/log/td-agent/glusterd
</store>

#Elasticsearch

<store>
type elasticsearch
host ELASTICSEARCH_URL_HERE
port 9200
index_name glusterfs
type_name fluentd
logstash_format true

</store>

</match>

That’s it! You should now be able to search and visualize your GlusterF'S logs with Kibana.

Acknowledgement

This article is inspired by Daisuke Sasaki’s article on Classmethod’s website. Thanks Daisuke!

Learn More

e Fluentd Architecture
e Fluentd Get Started
e GlusterFS Input Plugin

87


http://www.elasticsearch.org/overview/kibana
http://dev.classmethod.jp/cloud/aws/glusterfs-with-fluentd/
https://github.com/keithseahus/fluent-plugin-glusterfs

Configuration File

This article describes the basic concepts of Fluentd’s configuration file.

If you want to know V1 configuration format, please jump to V1 Format section.

Overview

The configuration file allows the user to control the input and output behavior of Fluentd by (1) selecting
input and output plugins and (2) specifying the plugin parameters. The file is required for Fluentd to operate

properly.

Config File Location

RPM or Deb If you installed Fluentd using the rpm or deb packages, the config file is located at /etc/td-
agent/td-agent.conf. sudo /etc/init.d/td-agent reload will reload the config file.

$ sudo vi /etc/td-agent/td-agent.conf

Gem If you installed Fluentd using the Ruby Gem, you can create the configuration file using the following
commands. Sending a SIGHUP signal will reload the config file.

$ sudo fluentd --setup /etc/fluent
$ sudo vi /etc/fluent/fluent.conf

List of Directives

The configuration file consists of the following directives:

1. source directives determine the input sources.
2. match directives determine the output destinations.
3. include directives include other files.

Let’s actually create a configuration file step by step.

(1) “source”: where all the data come from

Fluentd’s input sources are enabled by selecting and configuring the desired input plugins using source
directives. Fluentd’s standard input plugins include http and forward. http turns fluentd into an HTTP
endpoint to accept incoming HTTP messages whereas forward turns fluentd into a TCP endpoint to accept
TCP packets. Of course, it can be both at the same time (You can add as many sources as you wish)

# Receive events from 24224/tcp
# This is used by log forwarding and the fluent-cat command
<source>
type forward
port 24224
</source>

88



# http://this.host:9880/myapp.access?json={"event":"data"}
<source>

type http

port 9880
</source>

Each source directive must include a type parameter. The type parameter specifies which input plugin to
use.

Interlude: Routing The source submits events into the Fluentd’s routing engine. An event consists of
three entities: tag, time and record. The tag is a string separated by ’s (e.g. myapp.access), and is used
as the directions for Fluentd’s internal routing engine. The time field is specified by input plugins, and it
must be in the Unix time format. The record is a JSON object.

In the example above, the HT'TP input plugin submits the following event::

# generated by http://this.host:9880/myapp.access?json={"event":"data"}
tag: myapp.access

time: (current time)

record: {"event":"data"}

Didn’t find your input source? You can write your own plugin! You can add new input sources
by writing your own plugins. For further information regarding Fluentd’s input sources, please refer to the
Input Plugin Overview article.

(2) “match”: Tell fluentd what to do!

The “match” directive looks for events with matching tags and processes them. The most common use of
the match directive is to output events to other systems (for this reason, the plugins that correspond to the
match directive are called “output plugins”). Fluentd’s standard output plugins include file and forward.
Let’s add those to our configuration file.

# Receive events from 24224/tcp
# This is used by log forwarding and the fluent-cat command
<source>
type forward
port 24224
</source>

# http://this.host:9880/myapp.access?json={"event":"data"}
<source>

type http

port 9880
</source>

# Match events tagged with "myapp.access" and
# store them to /var/log/fluent/access.%Y-/%m-7%d
# 0f course, you can control how you partition your data
# with the time_slice_format option.
<match myapp.access>
type file
path /var/log/fluent/access
</match>

89



Each match directive must include a match pattern and a type parameter. Only events with a tag matching
the pattern will be sent to the output destination (in the above example, only the events with the tag
“myapp.access” is matched). The type parameter specifies the output plugin to use.

Just like input sources, you can add new output destinations by writing your own plugins. For further
information regarding Fluentd’s output destinations, please refer to the Output Plugin Overview article.

Match Pattern: how you control the event flow inside fluentd

The following match patterns can be used for the <match> tag.

e * matches a single tag part.

o For example, the pattern a.* matches a.b, but does not match a or a.b.c
e *x matches zero or more tag parts.

e For example, the pattern a.** matches a, a.b and a.b.c

e {X,Y,Z} matches X, Y, or Z, where X, Y, and Z are match patterns.

e For example, the pattern {a,b} matches a and b, but does not match ¢

e This can be used in combination with the * or ** patterns. Examples include a.{b,c}.* and
a.{b,c.xx}

o When multiple patterns are listed inside one <match> tag (delimited by one or more whitespaces), it
matches any of the listed patterns. For example:

e The patterns <match a b> match a and b.

e The patterns <match a.** b.*> match a, a.b, a.b.c. (from the first pattern) and b.d (from the
second pattern).

Match Order

Fluentd tries to match tags in the order that they appear in the config file. So if you have the following
configuration:

# ** matches all tags. Bad :(
<match **>

type blackhole_plugin
</match>

<match myapp.access>

type file

path /var/log/fluent/access
</match>

then myapp.access is never matched. Wider match patterns should be defined after tight match patterns.

<match myapp.access>

type file

path /var/log/fluent/access
</match>

90



# Capture all unmatched tags. Good :)
<match **>

type blackhole_plugin
</match>

(3) Re-use your config: the “include” directive

Directives in separate configuration files can be imported using the include directive::

# Include config files in the ./config.d directory
include config.d/*.conf

The include directive supports regular file path, glob pattern, and http URL conventions::

# absolute path
include /path/to/config.conf

# if using a relative path, the directive will use
# the dirname of this config file to expand the path
include extra.conf

# glob match pattern
include config.d/*.conf

# http
include http://example.com/fluent.conf

Supported Data Types for Values

Each Fluentd plugin has a set of parameters. For example, in_ tail has parameters such as rotate_wait and
pos_file. Each parameter has a specific type associated with it. They are defined as follows:

NOTE: Each parameter’s type should be documented. If not, please let the plugin author know.

e string type: the field is parsed as a string. This is the most “generic” type, where each plugin decides
how to process the string.

e integer type: the field is parsed as an integer.

e float type: the field is parsed as a float.

e size type: the field is parsed as the number of bytes. There are several notational variations:

— If the value matches <INTEGER>k or <INTEGER>K, then the value is the INTEGER number of
kilobytes.

— If the value matches <INTEGER>m or <INTEGER>M, then the value is the INTEGER number of
megabytes.

— If the value matches <INTEGER>g or <INTEGER>G, then the value is the INTEGER number of
gigabytes.

— If the value matches <INTEGER>t or <INTEGER>T, then the value is the INTEGER number of
terabytes.

— Otherwise, the field is parsed as integer, and that integer is the number of bytes.

e time type: the field is parsed as a time duration.

91



If the value matches <INTEGER>s, then the value is the INTEGER seconds.

If the value matches <INTEGER>m, then the value is the INTEGER minutes.

If the value matches <INTEGER>h, then the value is the INTEGER hours.

If the value matches <INTEGER>d, then the value is the INTEGER days.

Otherwise, the field is parsed as float, and that float is the number of seconds. This option is
useful for specifying sub-second time durations such as “0.1” (=0.1 second = 100ms).

o array type: the field is parsed as a JSON array (since v0.10.46)
o hash type: the field is parsed as a JSON object (since v0.10.46)

array and hash are JSON because almost programming languages and infrastructure tools can generate
JSON value easily than unusual format.

V1 Format

You can enable V1 configuration format by passing -—use-v1-config option to fluentd.

Basic structures are same as old format, e.g. <source>, <match> and tag matching. This section describes
the different points between V1 and old format.

NOTE: V1 means Fluentd vl(Release plan). Fluentd vl will use this new format by default. So Fluentd
provides new format prior to vl release for smooth and gradual transition.

Multi line support for array and hash values

V1 format allows multi line value for array and hash values.

array_param [

lla" , llbll

]

hash_param {
"k"ityt,
"k1":10

}

"foo" is interpreted as foo, not "foo"
" is a quote character of string value. It causes the different behaviour beteen V1 and old format.
str_param "foo"

e In V1, str_param is foo
e In old, str_param is "foo"

Allow # in string value

# is a comment symbol in both V1 and old format. But # is allowed in string value in V1 format.
str_param foo#bar

e In V1, str_ param is foo#bar
e In old, str_param is foo

92



Embedded Ruby code

You can evaluate the Ruby code with #{} in " quoted string. This is useful for setting machine information
like hostname.

host_param "#{Socket.gethostnamel}" # host_param is actual hostname like “webserverl'.

NOTE: config-xxx mixins use “${}”, not “#{}”. These embedded configurations are two different things.

\ is escape character
\ is interpreted as escape character. You need \ for setting ", \r, \n, \t, \ or several characters in parameter.
str_param foo\nbar # \n is intereted as actual LF chatacter

So if you have \ in your regexp format, you should write \\ instead of \.

Logging of Fluentd

This article describes Fluentd’s logging mechanism.

Fluentd has two log layers: global and per plugin. Different log levels can be set for global logging and
plugin level logging.

Log Level
Shown below is the list of supported values, in increasing order of verbosity:

e fatal
e error
e warn
e info
e debug
e trace

The default log level is info, and Fluentd outputs info, warn, error and fatal logs by default.

Global Logs

Global logging is used by Fluentd core and plugins that don’t set their own log levels. The global log level
can be adjusted up or down.

Increase Verbosity Level
The -v option sets the verbosity to debug while the —vv option sets the verbosity to trace.

$ fluentd -v ... # debug level
$ fluentd -vv ... # trace level

These options are useful for debugging purposes.

93



Decrease Verbosity Level
The -q option sets the verbosity to warn while the -qq option sets the verbosity to error.

$ fluentd -q ... # warn level
$ fluentd -qq ... # error level

Per Plugin Log (Fluentd v0.10.43 and above)

The log_level option sets different levels of logging for each plugin. It can be set in each plugin’s configu-
ration file.

For example, in order to debug in_ tail but suppress all but fatal log messages for in_ http, their respective
log_level options should be set as follows:

<source>

type tail

log_level debug

path /var/log/data.log
</source>
<source>

type http

log_level fatal
</source>

If you don’t specify the log_level parameter, the plugin will use the global log level.

NOTE: Some plugins haven’t supported per-plugin logging yet. The logging section of the Plugin Develop-
ment article explains how to update such plugins to support the new log level system.

Suppress repeated stacktrace

Fluentd can suppress same stacktrace with —-suppress-repeated-stacktrace. For example, if you pass
--suppress-repeated-stacktrace to fluentd:

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:154:rescue in emit_stream: emit transaction failed erro

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:140:emit_stream: /Users/repeatedly/devel/fluent/fluer

[snip]

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:140:emit_stream: /Users/repeatedly/devel/fluent/fluer
2013-12-04 15:05:53 +0900 [error]: plugin/in_object_space.rb:113:rescue in on_timer: object space failed tc
2013-12-04 15:05:55 +0900 [warn]: fluent/engine.rb:154:rescue in emit_stream: emit transaction failed erro

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:140:emit_stream: /Users/repeatedly/devel/fluent/fluer

[snip]

logs are changed to:

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:154:rescue in emit_stream: emit transaction failed erro

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:140:emit_stream: /Users/repeatedly/devel/fluent/fluer

[snip]

2013-12-04 15:05:53 +0900 [warn]: fluent/engine.rb:140:emit_stream: /Users/repeatedly/devel/fluent/fluer
2013-12-04 15:05:53 +0900 [error]: plugin/in_object_space.rb:113:rescue in on_timer: object space failed tc
2013-12-04 15:05:55 +0900 [warn]: fluent/engine.rb:154:rescue in emit_stream: emit transaction failed erro

2013-12-04 15:05:55 +0900 [warn]: plugin/in_object_space.rb:111:on_timer: suppressed same stacktrace

94



Same stacktrace is replaced with suppressed same stacktrace message until other stacktrace is received.

Output to log file

Fluentd outputs logs to STDOUT by default. To output to a file instead, please specify the -o option.
$ fluentd -o /path/to/log_file

NOTE: Fluentd doesn’t support log rotation yet.

Capture Fluentd logs

Fluentd marks its own logs with the fluent tag. You can process Fluentd logs by using <match fluent.**>.
If you define <match fluent.**> in your configuration, then Fluend will send its own logs to this match
destination. This is useful for monitoring Fluentd logs.

For example, if you have the following <match fluent.**>:

# omit other source / match
<match fluent.x**>

type stdout
</match>

then Fluentd outputs fluent.info logs to stdout like below:

2014-02-27 00:00:00 +0900 [info]: shutting down fluentd
2014-02-27 00:00:01 +0900 fluent.info: { "message":"shutting down fluentd"} # by <match fluent.*x>
2014-02-27 00:00:01 +0900 [info]: process finished code = 0

In production, you can use out_ forward to send Fluentd logs to a monitoring server. The monitoring server
can then filter and send the logs to your notification system: chat, irc, etc.

Leaf server example:

# Add hostname for identifing the server and tag to filter by log level
<match fluent.x*x*>

type record_modifier

tag internal.message

host ${hostname}

include_tag_key

tag_key original_tag
</match>

<match internal.message>
type forward
<server>
# Monitoring server parameters
</server>
</match>

Monitoring server example:

95



# Ignore trace, debug and info log

<match internal.message>
type grep
regexpl original_tag fluent.(warn|error|fatal)
add_tag_prefix filtered

</match>

<match filtered.internal.message>
# your notification setup. This example uses irc plugin
type irc
host irc.domain
channel notify
message notice: Y%s [%s] Qs Us
out_keys original_tag,time,host,message
</match>

If an error occurs, you will get a notification message in your irc notify channel.

01:01 fluentd: [11:10:24] notice: fluent.warn [2014/02/27 01:00:00] @leaf.server.domain detached forwardir

Monitoring Fluentd

This article explains how to monitor the Fluentd daemon.

Monitoring Agent

Fluentd has a monitoring agent to retrieve internal metrics in JSON via HTTP. Please add the following
lines to your configuration file.

<source>
type monitor_agent
bind 0.0.0.0
port 24220
</source>

Next, please restart the agent and get the metrics via HTTP.

$ curl http://host:24220/api/plugins.json
{"plugins": [{"plugin_id":"object:3fec669d6ac4","type": "forward","output_plugin":false,"config":{"type":

Process Monitoring

Two ruby processes (parent and child) are executed. Please make sure that these processes are running. The
example for td-agent is shown below.

/usr/1ib/fluent/ruby/bin/ruby /usr/sbin/td-agent
--daemon /var/run/td-agent/td-agent.pid
--log /var/log/td-agent/td-agent.log

96



For td-agent on Linux, you can check the process statuses with the following command. Two processes
should be shown if there are no issues.

$ ps w -C ruby -C td-agent --no-heading
32342 7 S1 0:00 /usr/lib/fluent/ruby/bin/ruby /usr/sbin/td-agent --daemon /var/run/td-agent/td-age:
32345 7 S1  0:01 /usr/lib/fluent/ruby/bin/ruby /usr/sbin/td-agent --daemon /var/run/td-agent/td-age:

Port Monitoring

Fluentd opens several ports according to the configuration file. We recommend checking the availability of
these ports. The default port settings are shown below:

o TCP 0.0.0.0 8388 (HTTP by default)
o TCP 0.0.0.0 24224 (Forward by default)

Debug Port

A debug port for local communication is recommended for trouble shooting. Please note that the configura-
tion below will be required.

<source>
type debug_agent
bind 127.0.0.1
port 24230
</source>

You can attach the process using the fluent-debug command through dRuby.

Fluentd’s Signal Handling

This article explains how Fluentd handles UNIX signals.

Process Model

When you launch Fluentd, it creates two processes: supervisor and worker. The supervisor process controls
the life cycle of the worker process. Please make sure to send any signals to the supervisor process.

Signals
SIGINT or SIGTERM

Stops the daemon gracefully. Fluentd will try to flush the entire memory buffer at once, but will not retry
if the flush fails. Fluentd will not flush the file buffer; the logs are persisted on the disk by default.

SIGUSR1

Forces the buffered logs to be flushed and reopens Fluentd’s log. All buffers (including memory and file) will
be flushed. Fluentd will try to flush the entire memory buffer at once, but will not retry if the flush fails.

97



SIGHUP

Reloads the configuration file by gracefully restarting the worker process. Fluentd will try to flush the entire
memory buffer at once, but will not retry if the flush fails. Fluentd will not flush the file buffer; the logs are
persisted on the disk by default.

Fluentd High Availability Configuration

For high-traffic websites, we recommend using a high availability configuration of Fluentd.

Message Delivery Semantics

Fluentd is designed primarily for event-log delivery systems.

In such systems, several delivery guarantees are possible:

o At most once: Messages are immediately transferred. If the transfer succeeds, the message is never
sent out again. However, many failure scenarios can cause lost messages (ex: no more write capacity)

o At least once: FEach message is delivered at least once. In failure cases, messages may be delivered
twice.

e FEzactly once: Each message is delivered once and only once. This is what people want.

If the system “can’t lose a single event”, and must also transfer “exactly once”, then the system must stop
ingesting events when it runs out of write capacity. The proper approach would be to use synchronous
logging and return errors when the event cannot be accepted.

That’s why Fluentd guarantees ‘At most once’ transfers. In order to collect massive amounts of data
without impacting application performance, a data logger must transfer data asynchronously. This improves
performance at the cost of potential delivery failures.

However, most failure scenarios are preventable. The following sections describe how to set up Fluentd’s
topology for high availability.

Network Topology
To configure Fluentd for high availability, we assume that your network consists of ‘log forwarders’ and ‘log
aggregators’.

‘log forwarders’ are typically installed on every node to receive local events. Once an event is received, they
forward it to the ‘log aggregators’ through the network.

‘log aggregators’ are daemons that continuously receive events from the log forwarders. They buffer the
events and periodically upload the data into the cloud.

Fluentd can act as either a log forwarder or a log aggregator, depending on its configuration. The next
sections describes the respective setups. We assume that the active log aggregator has ip ‘192.168.0.1’ and
that the backup has ip ‘192.168.0.2".

Log Forwarder Configuration

Please add the following lines to your config file for log forwarders. This will configure your log forwarders
to transfer logs to log aggregators.

98



log forwarders

nodel
Log File tail
~ td-agent N
Application ﬁy |
node2
Log File tail
\ td-agent [T
Application ﬁy
node3
Log File tail
\ td-agent
Application ﬁv

™

99

log aggregators

192.168.0.1

td-agent
(active)

192.168.0.2

td-agent
(backup)




# TCP input
<source>
type forward
port 24224
</source>

# HTTP input

<source>
type http
port 8888

</source>

# Log Forwarding
<match mytag.**>
type forward

# primary host
<server>
host 192.168.0.1
port 24224
</server>
# use secondary host
<server>
host 192.168.0.2
port 24224
standby
</server>

# use longer flush_interval to reduce CPU usage.
# note that this is a trade-off against latency.
flush_interval 60s

</match>

When the active aggregator (192.168.0.1) dies, the logs will instead be sent to the backup aggregator
(192.168.0.2). If both servers die, the logs are buffered on-disk at the corresponding forwarder nodes.
Log Aggregator Configuration

Please add the following lines to the config file for log aggregators. The input source for the log transfer is
TCP.

# Input
<source>
type forward
port 24224
</source>

# Output
<match mytag.**>

</match>
The incoming logs are buffered, then periodically uploaded into the cloud. If upload fails, the logs are stored
on the local disk until the retransmission succeeds.

100



Failure Case Scenarios
Forwarder Failure
When a log forwarder receives events from applications, the events are first written into a disk buffer (specified

by buffer path). After every flush interval, the buffered data is forwarded to aggregators.

This process is inherently robust against data loss. If a log forwarder’s fluentd process dies, the buffered data
is properly transferred to its aggregator after it restarts. If the network between forwarders and aggregators
breaks, the data transfer is automatically retried.

However, possible message loss scenarios do exist:

e The process dies immediately after receiving the events, but before writing them into the buffer.
e The forwarder’s disk is broken, and the file buffer is lost.

Aggregator Failure

When log aggregators receive events from log forwarders, the events are first written into a disk buffer
(specified by buffer path). After every flush interval, the buffered data is uploaded into the cloud.

This process is inherently robust against data loss. If a log aggregator’s fluentd process dies, the data from
the log forwarder is properly retransferred after it restarts. If the network between aggregators and the cloud
breaks, the data transfer is automatically retried.

However, possible message loss scenarios do exist:

e The process dies immediately after receiving the events, but before writing them into the buffer.
o The aggregator’s disk is broken, and the file buffer is lost.

Trouble Shooting
“no nodes are available”

Please make sure that you can communicate with port 24224 using not only TCP, but also UDP. These
commands will be useful for checking the network configuration.

$ telnet host 24224
$ nmap -p 24224 -sU host

Please note that there is one known issue where VMware will occasionally lose small UDP packages used for
heartbeat.

Failure Scenarios

This article lists various Fluentd failure scenarios. We will assume that you have configured Fluentd for
High Availability, so that each app node has its local forwarders and all logs are aggregated into multiple
aggregators.

101


http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2019944

Apps Cannot Post Records to Forwarder

In the failure scenario, the application sometimes fails to post records to its local Fluentd instance when
using logger libraries of various languages. Depending on the maturity of each logger library, some clever
mechanisms have been implemented to prevent data loss.

1) Memory Buffering (available for Ruby, Java, Python, Perl) If the destination Fluentd instance
dies, certain logger implementations will use extra memory to hold incoming logs. When Fluentd comes
back, these loggers will automatically send out the buffered logs to Fluentd again. Once the maximum
buffer memory size is reached, most current implementations will write the data onto the disk or throw away
the logs.

2) Exponential Backoff (available for Ruby, Java) When trying to resend logs to the local forwarder,
some implementations will use exponential backoff to prevent excessive re-connect requests.

Forwarder or Aggregator Fluentd Goes Down

What happens when a Fluentd process dies for some reason? It depends on your buffer configuration.

buf_ _memory If you're using buf memory, the buffered data is completely lost. This is a tradeoff for
higher performance. Lowering the flush_ interval will reduce the probability of losing data, but will increase
the number of transfers between forwarders and aggregators.

buf_file If you're using buf file, the buffered data is stored on the disk. After Fluentd recovers, it will
try to send the buffered data to the destination again.

Please note that the data will be lost if the buffer file is broken due to I/O errors. The data will also be lost
if the disk is full, since there is nowhere to store the data on disk.

Storage Destination Goes Down

If the storage destination (e.g. Amazon S3, MongoDB, HDFS, etc.) goes down, Fluentd will keep trying to
resend the buffered data. The retry logic depends on the plugin implementation.

If you’re using buf memory, aggregators will stop accepting new logs once they reach their buffer limits. If
you’re using buf file, aggregators will continue accepting logs until they run out of disk space.

Performance Tuning

Check top command

If Fluentd doesn’t perform as well as you had expected, please check the top command first. You need to
identify which part of your system is the bottleneck (CPU? Memory? Disk I/O? etc).

Multi Process

The CPU is often the bottleneck for Fluentd instances that handle billions of incoming records. To utilize
multiple CPU cores, we recommend using the in_multiprocess plugin.

e in_multiprocess

102



Plugin Management

This article explains how to manage Fluentd plugins, including adding 3rd party plugins.

fluent-gem

The fluent-gem command is used to install Fluentd plugins. This is a wrapper around the gem command.
fluent-gem install fluent-plugin-grep

NOTE: Ruby doesn’t guarantee C extension API compatibility between its major versions. If you update
Fluentd’s Ruby version, you should re-install the plugins that depend on C extension.

If Using td-agent, Use /usr/lib/fluent/ruby/bin/fluent-gem

If you are using td-agent, please make sure to use td-agent’s fluent-gem command. Othrewise (e.g. you use
the command belonging to system, rvm, etc.), you won’t be able to find your “installed” plugins.

Please see this FAQ for more information.
“-p” option
Fluentd’s -p option is used to add an extra plugin directory to the load path. For example, if you put the

out_foo.rb plugin into /path/to/plugin, you can load the out_foo.rb plugin by specifying the -p option
as shown below.

fluentd -p /path/to/plugin

You can specify the -p option more than once.

Add a Plugin Via /etc/fluent/plugin

Fluentd adds the /etc/fluent/plugin directory to its load path by default. Thus, any additional plugins
that are placed in /etc/fluent/plugin will be loaded automatically.

If Using td-agent, Use /etc/td-agent/plugin

If you are using td-agent, Fluentd uses the /etc/td-agent/plugin directory instead of /etc/fluent/plugin.
Please put your plugins here instead.

“—gemfile” option

A Ruby application manages gem dependencies using Gemfile and Bundler. Fluentd’s --gemfile option
takes the same approach, and is useful for managing plugin versions separated from shared gems.

For example, if you have following Gemfile at /etc/fluent/Gemlfile:

103


http://bundler.io/

source 'https://rubygems.org'
gem 'fluentd', '0.10.43'

gem 'fluent-plugin-grep', '0.3.2'
gem 'fluent-plugin-elasticsearch', '0.2.0'

You can pass this Gemfile to Fluentd via the --gemfile option.
fluentd --gemfile /etc/fluent/Gemfile

When specifying the -—gemfile option, Fluentd will try to install the listed gems using Bundler. Fluentd
will only load listed gems separated from shared gems, and will also prevent unexpected plugin updates.

In addition, if you update Fluetnd’s Ruby version, Bundler will re-install the listed gems for the new Ruby
version. This allows you to avoid the C extention API compatibility problem.

Troubleshooting Fluentd

Look at Logs

If things aren’t happening as expected, please first look at your logs. For td-agent (rpm/deb), the logs are
located at /var/log/td-agent/td-agent.log.

Turn on Verbose Logging

You can get more information about the logs if verbose logging is turned on. Please follow the steps below.

rpm

1. edit /etc/init.d/td-agent
2. add -vv to TD__AGENT__ARGS
3. restart td-agent

# at /etc/init.d/td-agent

TD_AGENT_ARGS="... -vv"

deb
1. edit /etc/init.d/td-agent

2. add -vv to DAEMON__ARGS
3. restart td-agent

# at /etc/init.d/td-agent

DAEMON_ARGS="... -vv"

104



gem
Please add -vv to your command line.

$ fluentd .. -vv

Input Plugin Overview

Fluentd has 3 types of plugins: Input, Output, and Buffer. This article provides an overview of Input
plugins.

Overview

Input plugins extend Fluentd to retrieve and pull event logs from external sources. An input plugin typically
creates a thread socket and a listen socket. It can also be written to periodically pull data from data sources.

List of Input Plugins

e in forward
e in_ http

e in tail

e in exec

e in_syslog

e in_ scribe

Other Input Plugins

Please refer to this list of available plugins to find out about other Input plugins.

e Fluentd plugins

forward Input Plugin

The in_forward Input plugin listens to a TCP socket to receive the event stream. It also listens to an UDP
socket to receive heartbeat messages.

This plugin is mainly used to receive event logs from other Fluentd instances, the fluent-cat command, or
client libraries. This is by far the most efficient way to retrieve the records.
Example Configuration

in_forward is included in Fluentd’s core. No additional installation process is required.

<source>
type forward
port 24224
bind 0.0.0.0
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

105


http://fluentd.org/plugin/

Parameters

type (required) The value must be forward.

port The port to listen to. Default Value = 24224

bind The bind address to listen to. Default Value = 0.0.0.0 (all addresses)
linger_ timeout The timeout time used to set linger option. The default is 0

log_level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Protocol

This plugin accepts both JSON or MessagePack messages and automatically detects which is used. Internally,
Fluent uses MessagePack as it is more efficient than JSON.

The time value is a platform specific integer and is based on the output of Ruby’s Time.now.to_i function.
On Linux, BSD and MAC systems, this is the number of seconds since 1970.

Multiple messages may be sent in the same connection.

stream:
message. ..

message:
[tag, time, record]
or
[tag, [[time,record], [time,record], ...]]
example:

["myapp.access", 1308466941, {"a":1}] ["myapp.messages", 1308466942, {"b":2}]
["myapp.access", [[1308466941, {"a":1}], [1308466942, {"b":2}]11]

Secure Forward Input

The in_secure_forward input plugin accepts messages via SSL with authentication (cf. out secure forward).

Example Configurations

This section provides some example configurations for in_secure_forward.

106


http://msgpack.org/

Minimalist Configuration

<source>
type secure_forward
shared_key secret_string
self_hostname server.fqdn.local # This fqdn is used as CN (Common Name) of certificates
cert_auto_generate yes # This parameter MUST be specified
</source>

Check username/password from Clients

<source>
type secure_forward
shared_key secret_string
self_hostname server.fqdn.local
cert_auto_generate yes
authentication yes # Deny clients without valid username/password
<user>

username tagomoris
password foobar012
</user>
<user>
username frsyuki
password yakiniku
</user>
</source>

Deny Unknown Source IP /hosts

<source>
type secure_forward
shared_key secret_string
self_hostname server.fqdn.local
cert_auto_generate yes
allow_anonymous_source no # Allow to accept from nodes of <client>
<client>
host 192.168.10.30
# network address (ex: 192.168.10.0/24) NOT Supported now
</client>
<client>
host your.host.fqdn.local
# wildcard (ex: *.host.fqdn.local) NOT Supported now
</client>
</source>

You can use the username/password check and client check together:

<source>
type secure_forward
shared_key secret_string
self_hostname server.fqdn.local
cert_auto_generate yes

107



allow_anonymous_source no # Allow to accept from nodes of <client>
authentication yes # Deny clients without valid username/password
<user>
username tagomoris
password foobar012
</user>
<user>
username frsyuki
password sukiyaki
</user>
<user>
username repeatedly
password sushi
</user
<client>
host 192.168.10.30 # allow all users to connect from 192.168.10.30
</client>
<client>
host 192.168.10.31
users tagomoris,frsyuki # deny repeatedly from 192.168.10.31
</client>
<client>
host 192.168.10.32
shared_key less_secret_string # limited shared_key for 192.168.10.32
users repeatedly # and repatedly only
</client>
</source>

Parameters

type This parameter is required. Its value must be secure_forward.

port (integer) The default value is 24284.

bind (sring) The default value is 0.0.0.0.

self hostname (string) Default value of the auto-generated certificate common name (CN).

shared_ key (string) Optional shared key.

allow__keepalive (bool) Accept keepalive connection. The default value is true.
allow__anonymous__source (bool) Accept connections from unknown hosts.

authentication (bool) Require password authentication. The default value is false.
cert__auto__generate (bool) Auto-generate the CA (see the generate_x parameters below). The default

value is false.

If cert_auto_generat is false, cert_file_path must be set.

108



generate__private_key_ length (integer) The byte length of the auto-generated private key. The
default value is 2048.

generate__cert__country (string) The country of the auto-generated certificate. The default value is
“US”.

generate__cert_ state (string) The state of the auto-generated certificate. The default value is “CA”.

generate__cert_ locality (string) The locality of the auto-generated certificate. The default value is
“Mountain View”.

generate__cert__common_ name (string) The common name of the auto-generated certificate. The
default value is the value of self_hostname.

cert_ file_ path (string) The path to the cert file. If this is not set, cert_auto_generate must be set
to true.

private_key file (string) The path to the private key file used with the cert file located at
cert_file_path.

private__key_passphrase (string) The optional passphrase for the private key file found in
private_key_file.

read_ length (size) The number of bytes read per nonblocking read. The default value is SMB=810241024
bytes.

read__interval _msec (integer) The interval between the non-blocking reads, in milliseconds. The de-
fault value is 50.

socket__interval__msec (integer) The inteval between SSL reconnects in milliseconds. The default value
is 200.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

buffer__queue_ limit, buffer chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer_ chunk_ limit.

109



flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-

tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

http Input Plugin

The in_http Input plugin enables Fluentd to retrieve records from HTTP POST. The URL path becomes
the tag of the Fluentd event log and the POSTed body element becomes the record itself.

Example Configuration

in_http is included in Fluentd’s core. No additional installation process is required.

<source>
type http
port 8888
bind 0.0.0.0
body_size_limit 32m
keepalive_timeout 10s
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Example Usage The example below posts a record using the curl command.

$ curl -X POST -d 'json={"action":"login","user":2}'
http://localhost:8888/test.tag.here;

Parameters

type (required) The value must be http.

110



port The port to listen to. Default Value = 9880

bind The bind address to listen to. Default Value = 0.0.0.0 (all addresses)

body_ size_ limit The size limit of the POSTed element. Default Value = 32MB
keepalive__timeout The timeout limit for keeping the connection alive. Default Value = 10 seconds
add__http__headers Add HTTP_ prefix headers to the record. The default is false

log_level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.
time query parameter
If you want to pass the event time from your application, please use the time query parameter.

$ curl -X POST -d 'json={"action":"login","user":2}'
"http://localhost:8888/test.tag.here?time=1392021185"

Unix Domain Socket Input Plugin

The in_unix Input plugin enables Fluentd to retrieve records from the Unix Domain Socket. The wire
protocol is the same as in_forward, but the transport layer is different.

Example Configuration
in_unix is included in Fluentd’s core. No additional installation process is required.

<source>

type unix

path /path/to/socket.sock
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

type (required) The value must be unix.

path (required) The path to your Unix Domain Socket.

111



log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

tail Input Plugin

The in_tail Input plugin allows Fluentd to read events from the tail of text files. Its behavior is similar to
the tail -F command.

Example Configuration

in_tail is included in Fluentd’s core. No additional installation process is required.

<source>
type tail
path /var/log/httpd-access.log
pos_file /var/log/td-agent/httpd-access.log.pos
tag apache.access
format apache2
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

How it Works

e When Fluentd is first configured with in_tail, it will start reading from the tail of that log, not the
beggining.

e Once the log is rotated, Fluentd starts reading the new file from the beggining. It keeps track of the
current inode number.

o If td-agent restarts, it starts reading from the last position td-agent read before the restart. This
position is recorded in the position file specified by the pos_ file parameter.

Parameters

type (required) The value must be tail.

tag (required) The tag of the event.

x can be specified. * is replaced by actual file path which is replaced / with .. If you use following
configuration

path /path/to/file
tag foo.*

in_ tail emits the event to ‘foo.path.to.file’ tag.

112



path (required) The paths to read. Multiple paths can be specified, separated by ¢,

* and strftime format can be included to add/remove watch file dynamically. At interval of
refresh_interval, Fluentd refreshes the list of watch file.

path /path/to/%Y/%m/%d/*

If the date is 20140401, Fluentd starts to watch the files in /path/to/2014/04/01 directory.

NOTE: You should not use "* with log rotation because it may cause the log duplication. In such case, you
should separate in_ tail plugin configuration.

refresh__interval The interval of refreshing the list of watch file. Default is 60 seconds.

read_ from__head Start to read the logs from the head of file, not bottom. The default is false.

format (required) The format of the log. It is the name of a template or regexp surrounded by ‘/".

The regexp must have at least one named capture (?<NAME>PATTERN). If the regexp has a capture
named ‘time’; it is used as the time of the event. You can specify the time format using the time_format
parameter.

The following templates are supported:
e regexp

The regexp for the format parameter can be specified. Fluentular is a great website to test your regexp for
Fluentd configuration.

e apache2

Reads apache’s log file for the following fields: host, user, time, method, path, code, size, referer and agent.
This template is analogous to the following configuration:

format /7 (?<host>[" 1*) [T 1% (7<user>[" 1*) \[(?<time>["\]11*)\] "(?<method>\S+) (7: +(?<path>[~ ]*) +\S*)?7"
time_format %d/%b/%Y:%H:%M:%S %z

e nginx

Reads Nginx’s log file for the following fields: remote, user, time, method, path, code, size, referer and agent.
This template is analogous to the following configuration:

format /~(?<remote>[~ ]*) (7<host>[" 1*) (7<user>[~ I*) \[(?<time>["\1]1*)\] "(?<method>\S+) (7: +(7<path>[~
time_format %d/%b/%Y:%H:%M:%S %z

e syslog
Reads syslog’s output file (e.g. /var/log/syslog) for the following fields: time, host, ident, and message. This

template is analogous to the following configuration:

113


http://fluentular.herokuapp.com/

format /7 (?<time>[~ 1* [T I* [T 1*) (7<host>[~ ]*) (7<ident>[a-zA-Z0-9_\/\.\-1%) (7:\[(?<pid>[0-9]1H)\1)7["\
time_format %b %d %H:%M:%S

e tsv or csv
If you use tsv or csv format, please also specify the keys parameter.

format tsv
keys keyl, key2, key3
time_key key2

If you specify the time_key parameter, it will be used to identify the timestamp of the record. The timestamp
when Fluentd reads the record is used by default.

format csv
keys keyl, key2, key3
time_key key3

e ltsv

Itsv (Labeled Tab-Separated Value) is a tab-delimited key-value pair format. You can learn more about it
on its webpage.

format 1ltsv
1.1

delimiter = # Optional.
time_key time_field_name

is used by default

If you specify the time_key parameter, it will be used to identify the timestamp of the record. The timestamp
when Fluentd reads the record is used by default.

e json
One JSON map, per line. This is the most straight forward format :).
format json
The time_key parameter can also be specified.

format json
time_key key3

e none

You can use the none format to defer parsing/structuring the data. This will parse the line as-is with the
key name “message”. For example, if you had a line

hello world. I am a line of log!

It will be parsed as

114


http://ltsv.org

{"message":"hello world. I am a line of log!"}

The key field is “message” by default, but you can specify a different value using the message_key parameter
as shown below:

format none
message_key my_message

e multiline

Read multiline log with formatN and format_firstline parameters. format_firstline is for detecting
start line of multiline log. formatN, N’s range is 1..20, is the list of Regexp format for multiline log. Here is
Rails log example:

format multiline

format_firstline /"Started/

formatl /Started (?<method>[" ]+) "(7<path>[""]+)" for (?<host>[~ ]+) at (?<time>[" 1+ [T 1+ [T J+)\n/
format2 /Processing by (?<controller>[~\u0023]+)\u0023(?<controller_method>[~ ]+) as (?<format>[~ ]1+7)\n/
format3 /( Parameters: (7<parameters>[~ ]1+)\n)?/

format4 / Rendered (7<template>[" ]+) within (?<layout>.+) \([\d\.]+ms\)\n/

formatb5 /Completed (?<code>[" 1+) [~ ]+ in (?<runtime>[\d\.]+)ms \(Views: (7<view_runtime>[\d\.]+)ms \| Act

If you have a multiline log

Started GET "/users/123/" for 127.0.0.1 at 2013-06-14 12:00:11 +0900
Processing by UsersController#show as HTML

Parameters: {"user_id"=>"123"}

Rendered users/show.html.erb within layouts/application (O.3ms)
Completed 200 OK in 4ms (Views: 3.2ms | ActiveRecord: 0.0Oms)

It will be parsed as

“‘text {“method”:“GET”,“path”:“ /users/123/”,“host”:“127.0.0.1”,“controller”:“UsersController”,“controller_ method”:“show
Puser_id” = >71237}7, ..}

types (optional, v.0.10.42 and up) Although every parsed field has type string by default, you can
specify other types. This is useful when filtering particular fields numerically or storing data with sensible
type information.

The syntax is
types <field_name_1>:<type_name_1>,<field_name_2>:<type_name_2>,...

e.g.,
types user_id:integer,paid:bool,paid_usd_amount:float

“wo» W

As demonstrated above, “,” is used to delimit field-type pairs while “:” is used to separate a field name with
its intended type.

Unspecified fields are parsed at the default string type.
The list of supported types are shown below:

115



o string

e bool

o integer (“int” would NOT work!)
o float

o time

e array

For the time and array types, there is an optional third field after the type name. For the “time” type, you
can specify a time format like you would in time_format.

For the “array” type, the third field specifies the delimiter (the default is «,”). For example, if a field called
“item_ ids” contains the value “3,4,5”, types item_ids:array parses it as [“3”, “4” “5”]. Alternatively, if
the value is “Adam|Alice|Bob”, types item_ids:array: | parses it as [“Adam”, “Alice”, “Bob”].

(133

pos__file (highly recommended)

This parameter is highly recommended. Fluentd will record the position it last read into this file.

pos_file /var/log/td-agent/tmp/access.log.pos

time_ format The format of the time field. This parameter is required only if the format includes a ‘time’
capture and it cannot be parsed automatically. Please see Time#strftime for additional information.

rotate_ wait in_ tail actually does a bit more than tail -F itself. When rotating a file, some data may
still need to be written to the old file as opposed to the new one.

in_ tail takes care of this by keeping a reference to the old file (even after it has been rotated) for some
time before transitioning completely to the new file. This helps prevent data designated for the old file from
getting lost. By default, this time interval is 5 seconds.

The rotate wait parameter accepts a single integer representing the number of seconds you want this time
interval to be.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

exec Input Plugin

The in_exec Input plugin executes external programs to receive or pull event logs. It will then read TSV
(tab separated values), JSON or MessagePack from the stdout of the program.

You can run a program periodically or permanently. To run periodically, please use the run_ interval pa-
rameter.

116


http://www.ruby-doc.org/core-1.9.3/Time.html#method-i-strftime

Example Configuration

in_exec is included in Fluentd’s core. No additional installation process is required.

<source>
type exec
command cmd arg arg
keys k1,k2,k3
tag_key ki
time_key k2
time_format %Y-%m-%d %H:%M:%S
run_interval 10s
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

type (required) The value must be exec.

command (required) The command (program) to execute.

format The format used to map the program output to the incoming event.

The following formats are supported:
o tsv (default)
e json
o msgpack

When using the tsv format, please also specify the comma-separated keys parameter.

keys k1,k2,k3

tag (required if tag_key is not specified) tag of the output events.

tag_key The key to use as the event tag instead of the value in the event record. If this parameter is not
specified, the tag parameter will be used instead.

time__key The key to use as the event time instead of the value in the event record. If this parameter is
not specified, the current time will be used instead.

time_ format The format of the event time used for the time_key parameter. The default is UNIX time
(integer).

run__interval The interval time between periodic program runs.

117



log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

syslog Input Plugin

The in_syslog Input plugin enables Fluentd to retrieve records via the syslog protocol on UDP.

Example Configuration

in_syslog is included in Fluentd’s core. No additional installation process is required.

<source>
type syslog
port 5140
bind 0.0.0.0
tag system
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Example Usage The retrieved data is organized as follows. Fluentd’s tag is generated by the tag param-
eter (tag prefix), facility level, and priority. The record is parsed by the regexp here.

tag = "#{0tag}.#{facility}.#{priority}"

record = {
llprill: IIOII’
"time": 1353436518,
"host": "host",

"ident": "ident",
"pid": "12345",
"message": "text"
}
Parameters

type (required) The value must be syslog.

port The port to listen to. Default Value = 5140

bind The bind address to listen to. Default Value = 0.0.0.0 (all addresses)

protocol__type The transport protocol used to receive logs. The default is “udp”, but you can select
“tcp” as well.

118


http://en.wikipedia.org/wiki/Syslog#Facility_Levels
http://en.wikipedia.org/wiki/Syslog#Severity_levels
https://github.com/fluent/fluentd/blob/master/lib/fluent/plugin/in_syslog.rb#L25

tag (required) The prefix of the tag. The tag itself is generated by the tag prefix, facility level, and
priority.

format The format of the log. This option is used to parse non-standard syslog formats using a regexp.

<source>

type syslog

tag system

format /YOUR_LOG_FORMAT/
</source>

NOTE: Your format regexp should not consider the ‘priority’ prefix of the log. For example, if in_ syslog
receives the log below:

<1>Feb 20 00:00:00 192.168.0.1 fluentd[11111]: [error] hogehoge
then the format parser receives the following log:

Feb 20 00:00:00 192.168.0.1 fluentd[11111]: [error] hogehoge

types (optional, v.0.10.42 and up) Although every parsed field has type string by default, you can
specify other types. This is useful when filtering particular fields numerically or storing data with sensible
type information.

The syntax is
types <field_name_1>:<type_name_1>,<field_name_2>:<type_name_2>,...

e.g.,
types user_id:integer,paid:bool,paid_usd_amount:float

W (1)

As demonstrated above, “,” is used to delimit field-type pairs while “:” is used to separate a field name with
its intended type.

Unspecified fields are parsed at the default string type.
The list of supported types are shown below:

e string

e bool

o integer (“int” would NOT work!)
« float

o time

e array

For the time and array types, there is an optional third field after the type name. For the “time” type, you
can specify a time format like you would in time_format.

For the “array” type, the third field specifies the delimiter (the default is “,”). For example, if a field called
“item__ids” contains the value “3,4,5”, types item_ids:array parses it as [“37, “4”, “5”]. Alternatively, if
the value is “Adam|Alice|Bob”, types item_ids:array: | parses it as [“Adam”, “Alice”, “Bob”].

119


http://en.wikipedia.org/wiki/Syslog#Facility_Levels
http://en.wikipedia.org/wiki/Syslog#Severity_levels

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

scribe Input Plugin

The in_scribe Input plugin enables Fluentd to retrieve records through the Scribe protocol. Scribe is
another log collector daemon that is open-sourced by Facebook.

Since Scribe hasn’t been well maintained recently, this plugin is useful for existing Scribe users who want to
use Fluentd with an existing Scribe infrastructure.

Install

in_scribe is included in td-agent by default. Fluentd gem users will need to install the fluent-plugin-scribe
gem using the following command.

$ fluent-gem install fluent-plugin-scribe

Example Configuration
<source>

type scribe

port 1463

bind 0.0.0.0

msg_format json
</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.
Example Usage We assume that you're already familiar with the Scribe protocol. This Ruby example
code posts logs to in_scribe.

Scribe’s category field becomes the tag of the Fluentd event log and Scribe’s message field becomes the

record itself. The msg_format parameter specifies the format of the message field.

Parameters

type (required) The value must be scribe.
port The port to listen to. Default Value = 1463

bind The bind address to listen to. Default Value = 0.0.0.0 (all addresses)

120


https://github.com/facebook/scribe
https://github.com/fluent/fluent-plugin-scribe/blob/master/bin/fluent-scribe-remote
https://github.com/fluent/fluent-plugin-scribe/blob/master/bin/fluent-scribe-remote

msg_ format The message format can be ‘text’, ‘json’, or ‘url param’ (default: text)

For json, Fluentd’s record is organized as follows. Scribe’s message field must be a valid JSON string
representing Hash; otherwise, the record is ignored.

tag: $category
record: $message

For text, Fluentd’s record is organized as follows. Scribe’s message can be any arbitrary string, but JSON
is recommended for ease of use with the subsequent analytics pipeline.

tag: $category
record: {'message': $message}

For url_param, Fluentd’s record is organized as follows. Scribe’s message field must contain URL parameter
style key-value pairs with URL encoding (e.g. keyl=vall&key2=val2).

tag: $url_param
record: {$keyl: $vall, $key2: $val2, ...}

is_ framed Specifies whether to use Thrift’s framed protocol or not (default: true).

server__type Chooses the server architecture. Options are ‘simple’, ‘threaded’, ‘thread_ pool’, or ‘non-
blocking’ (default: nonblocking).

add__prefix The prefix string which will always be added to the tag (default: nil).

log_level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.
Multiprocess Input Plugin

By default, Fluentd only uses a single CPU core on the system. The in_multiprocess Input plugin enables
Fluentd to use multiple CPU cores by spawning multiple child processes. One Fluentd user is using this
plugin to handle 10+ billion records / day.

Install

in_multiprocess is NOT included in td-agent by default. td-agent users must install fluent-plugin-
multiprocess manually.

$ /usr/lib64/fluent/ruby/bin/fluent-gem install fluent-plugin-multiprocess
Fluentd gem users must install the fluent-plugin-multiprocess gem using the following command.

$ fluent-gem install fluent-plugin-multiprocess

121



Example Configuration

<source>
type multiprocess

<process>
cmdline -c /etc/fluent/fluentd_childl.conf
sleep_before_start 1s
sleep_before_shutdown b5s

</process>

<process>
cmdline -c /etc/fluent/fluentd_child2.conf
sleep_before_start 1s
sleep_before_shutdown 5s

</process>

<process>
cmdline -c /etc/fluent/fluentd_child3.conf
sleep_before_start 1s
sleep_before_shutdown 5s

</process>

</source>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

type (required) The value must be multiprocess.

graceful_ kill interval The interval to send the signal to gracefully shut down the process (default:
2sec).

graceful_kill__interval__increment The increment time, when graceful shutdown fails (default: 3sec).

graceful _kill__timeout The timeout, to identify the failure of gracefull shutdown (default: 60sec).

process (required) The process section sets the command line arguments of a child process. This plugin
creates one child process for each section.

cmdline (required) The cmdline option is required in a section

sleep_ before__start This parameter sets the wait time before starting the process (default: Osec).

sleep_ before__shutdown This parameter sets the wait time before shutting down the process (default:
Osec).

log_ level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

122



Other Input Plugins
Please refer to this list of available plugins to find out about other Input plugins.

e Fluentd plugins

Output Plugin Overview

Fluentd has 3 types of plugins: Input, Output, and Buffer. This article provides an overview of Output
plugins.

Overview

There are three types of output plugins: Non-Buffered, Buffered, and Time Sliced.

e Non-Buffered output plugins do not buffer data and immediately write out results.

o Buffered output plugins maintain a queue of chunks (a chunk is a collection of events), and its behavior
can be tuned by the “chunk limit” and “queue limit” parameters (See the diagram below).

e Time Sliced output plugins are in fact a type of Bufferred plugin, but the chunks are keyed by time
(See the diagram below).

The output plugin’s buffer behavior (if any) is defined by a separate Buffer plugin. Different buffer plugins
can be chosen for each output plugin. Some output plugins are fully customized and do not use buffers.

secondary output

At Buffered output plugin, the user can specify <secondary> with any output plugin in <match> configu-
ration. If the retry count exceeds the buffer’s retry_limit, then buffered chunk is output to <secondary>
output plugin.

<secondary> is useful for backup when destination servers are unavilable, e.g. forward, mongo and other
plugins. We strongly recommend out_file plugin for <secondary>.

List of Non-Buffered Output Plugins

e out_ copy

e out null

e out roundrobin
e out_stdout

List of Buffered Output Plugins

e out_exec filter
e out_forward
e out_mongo or out_mongo replset

123


http://fluentd.org/plugin/

List of Time Sliced Output Plugins

e out exec

o out_file

e out_ s3

e out_webhdfs

Other Plugins
Please refer to this list of available plugins to find out about other Output plugins.

e others

file Output Plugin

The out_file Buffered Output plugin writes events to files. By default, it creates files on a daily basis
(around 00:10). This means that when you first import records using the plugin, no file is created immediately.
The file will be created when the time_slice_format condition has been met. To change the output
frequency, please modify the time_slice_format value.

Example Configuration
out_file is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type file
path /var/log/fluent/myapp
time_slice_format %Y¥%m¥%d
time_slice_wait 10m
time_format %Y/m%dT%HLMYSYz
compress gzip
utc

</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters
type (required)

The value must be file.

path (required)

The Path of the file. The actual path is path + time + ”log”. The time portion is determined by the
time_ slice_format parameter, descried below.

NOTE: Initially, you may see a file which looks like “/path/to/file.20140101.log.b4eea2c¢8166b147a0”. This
is an intermediate buffer file (“b4eea2c8166b147a0” identifies the buffer). Once the content of the buffer has
been completely flushed, you will see the output file without the trailing identifier.

124


http://fluentd.org/plugin/

time__slice_ format

The time format used as part of the file name. The following characters are replaced with actual values
when the file is created:

e %Y: year including the century (at least 4 digits)
o %m: month of the year (01..12)

o %d: Day of the month (01..31)

o %H: Hour of the day, 24-hour clock (00..23)

o %M: Minute of the hour (00..59)

o %8S: Second of the minute (00..60)

The default format is %Y%mJ%d, which creates one file per day. To create a file every hour, use %Y/%m%d’%H.

time__slice_ wait
The amount of time Fluentd will wait for old logs to arrive. This is used to account for delays in logs arriving

to your Fluentd node. The default wait time is 10 minutes (‘10m’), where Fluentd will wait until 10 minutes
past the hour for any logs that occured within the past hour.

For example, when splitting files on an hourly basis, a log recorded at 1:59 but arriving at the Fluentd node
between 2:00 and 2:10 will be uploaded together with all the other logs from 1:00 to 1:59 in one transaction,
avoiding extra overhead. Larger values can be set as needed.

time_ format

The format of the time written in files. The default format is ISO-8601.

utc

Uses UTC for path formatting. The default format is localtime.

compress

Compresses flushed files using gzip. No compression is performed by default.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

buffer__queue_ limit, buffer chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer_ chunk_ limit.

125



flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait

The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-
tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

forward Output Plugin

The out_forward Buffered Output plugin forwards events to other fluentd nodes. This plugin supports load-
balancing and automatic fail-over (a.k.a. active-active backup). For replication, please use the out_ copy
plugin.

The out_forward plugin detects server faults using a “ accrual failure detector” algorithm. You can cus-
tomize the parameters of the algorithm. When a server fault recovers, the plugin makes the server available
automatically after a few seconds.

Example Configuration

out_forward is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type forward
send_timeout 60s
recover_wait 10s
heartbeat_interval 1s
phi_threshold 8
hard_timeout 60s

<server>
name myserverl
host 192.168.1.3
port 24224
weight 60

</server>

<server>

126



name myserver2
host 192.168.1.4
port 24224
weight 60
</server>

<secondary>
type file
path /var/log/fluent/forward-failed
</secondary>
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters
type (required)

The value must be forward.

<server> (at least one is required)

The destination servers. Each server must have following information.

o name: The name of the server. This parameter is used in error messages.

o host (required): The IP address or host name of the server.

o port: The port number of the host. The default is 24224. Note that both TCP packets (event stream)
and UDP packets (heartbeat message) are sent to this port.

o weight: The load balancing weight. If the weight of one server is 20 and the weight of the other server
is 30, events are sent in a 2:3 raito. The default weight is 60.

<secondary> (optional)

The backup destination that is used when all servers are unavailable.

send__timeout

The timeout time when sending event logs. The default is 60 seconds.

recover__wait

The wait time before accepting a server fault recovery. The default is 10 seconds.

heartbeat_ type

The transport protocol to use for heartbeats. The default is “udp”, but you can select “tcp” as well.

127



heartbeat__interval

The interval of the heartbeat packer. The default is 1 second.

phi_ failure_ detector

Use the “Phi accrual failure detector” to detect server failure. The default value is true.

phi_ threshold

The threshold parameter used to detect server faults. The default value is 8.

hard__timeout

The hard timeout used to detect server failure. The default value is equal to the send_ timeout parameter.

standby

Marks a node as the standby node for an Active-Standby model between Fluentd nodes. When an active
node goes down, the standby node is promoted to an active node. The standby node is not used by the
out_forward plugin until then.

<match pattern>
type forward

<server>
name myserverl
host 192.168.1.3
weight 60

</server>

<server> # forward doesn't use myserver2 until myserverl goes down
name myserver2
host 192.168.1.4
weight 60
standby

</server>

</match>
## Buffer Parameters
For advanced usage, you can tune Fluentd's internal buffering mechanism with these parameters.

### buffer_type
The buffer type is “memory” by default ([buf_memory] (#buf_memory)). The “file~ ([buf_file] (#buf_file)) buff

### buffer_queue_limit, buffer_chunk_limit
The length of the chunk queue and the size of each chunk, respectively. Please see the [Buffer Plugin Overvie

### flush_interval

128



The interval between data flushes. The default is 60s. The suffixes "s" (seconds), "m" (minutes), and "h" (ho

### retry_wait, retry_limit and max_retry_wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respectivel

### num_threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s) de
#### log_level option (Fluentd v0.10.43 and above)

The "log_level” option allows the user to set different levels of logging for each plugin. The supported log

Please see the [logging article] (#logging) for further details.

Troubleshooting
“no nodes are available”

Please make sure that you can communicate with port 24224 using not only TCP, but also UDP. These
commands will be useful for checking the network configuration.

$ telnet host 24224
$ nmap -p 24224 -sU host

Please note that there is one known issue where VMware will occasionally lose small UDP packets used for
heartbeat.

Secure Forward Output

The out_secure_forward output plugin sends messages via SSL with authentication (cf. in_secure forward).

Example Configurations

This section provides some example configurations for out_secure_forward.

Minimalist Configuration

<match secret.data.**>
type secure_forward
shared_key secret_string
self_hostname client.fqdn.local
<server>
host server.fqdn.local # or IP
# port 24284
</server>
</match>

129


http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2019944

NOTE: Without hostname ACL (not yet implemented), self_hostname is not checked in any state. The
${hostname} placeholder is available for such cases.

<match secret.data.**>
type secure_forward
shared_key secret_string
self_hostname ${hostname}
<server>
host server.fqdn.local # or IP
# port 24284
</server>
</match>

Multiple Forward Destinations over SSL

When two or more <server>...</server> clauses are specified, out_secure_forward uses these server
nodes in a round-robin order. The servers with standby yes are NOT selected until all non-standby servers
go down.

NOTE: If a server requires username & password, set username and password in the <server> section:

<match secret.data.**>
type secure_forward
shared_key secret_string
self_hostname client.fqdn.local
<server>
host first.fqdn.local
username repeatedly
password sushi
</server>
<server>
host second.fqdn.local
username sasatatsu
password karaage
</server>
<server>
host standby.fqdn.local
username kzk
password hawaii
standby yes
</server>
</match>

Use the keepalive parameter to specify keepalive timeouts. For example, the configuration below discon-
nects and re-connects its SSL connection every hour. By default, keepalive is set to 0 and the connection
does NOT get disconnected unless there is a connection issue (This feature is for DNS name updates and
refreshing SSL common keys).

<match secret.data.**>
type secure_forward
shared_key secret_string
self_hostname client.fqdn.local
keepalive 3600

130



<server>
host server.fqdn.local # or IP
# port 24284
</server>
</match>

Parameters

type This parameter is required. Its value must be secure_forward.

port (integer) The default value is 24284.

bind (sring) The default value is 0.0.0.0.

self hostname (string) Default value of the auto-generated certificate common name (CN).

shared_ key (string) Optional shared key.

keepalive (time) The duration for keepalive. If this parameter is not specified, keepalive is disabled.

send__timeout (time) The send timeout value for sockets. The default value is 60 seconds.

allow__self signed__ certificate (bool) Enables self-signed CA. The default is true.

ca_file_path (string) The path to the certificate file.

reconnect__interval (time) The interval between SSL reconnects. The default value is 5 seconds.

read__length (integer) The number of bytes read per nonblocking read. The default value is
8MB=810241024 bytes.

read__interval _msec (integer) The interval between the non-blocking reads, in milliseconds. The de-
fault value is 50.

socket__interval__msec (integer) The inteval between SSL reconnects in milliseconds. The default value
is 200.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

131



buffer _queue_ limit, buffer_ chunk_ limit

The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview
article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait

The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-
tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

exec Output Plugin

The out_exec Buffered Output plugin passes events to an external program. The program receives the path
to a file containing the incoming events as its last argument. The file format is tab-separated values (TSV)
by default.

Example Configuration

out_exec is included in Fluentd’s core. No additional installation process is required.

<match pattern>

type exec

command cmd arg arg

format tsv

keys k1,k2,k3

tag_key ki1

time_key k2

time_format %Y-%m-%d %H:%M:%S
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

132



Parameters
type (required)

The value must be exec.

command (required)

The command (program) to execute. The exec plugin passes the path of a TSV file as the last argument.

format

The format used to map the incoming events to the program input.

The following formats are supported:

o tsv (default)
When using the tsv format, please also specify the comma-separated keys parameter.
in_keys k1,k2,k3

e json
o msgpack

tag_ key

The name of the key to use as the event tag. This replaces the value in the event record.

time_ key

The name of the key to use as the event time. This replaces the the value in the event record.

time_ format

The format for event time used when the time_key parameter is specified. The default is UNIX time
(integer).

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

133



buffer _queue_ limit, buffer_ chunk_ limit

The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview
article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait

The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-
tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

exec__filter Output Plugin

The out_exec_filter Buffered Output plugin (1) executes an external program using an event as input
and (2) reads a new event from the program output. It passes tab-separated values (TSV) to stdin and reads
TSV from stdout by default.

Example Configuration

out_exec_filter is included in Fluentd’s core. No additional installation process is required.

<match pattern>

type exec_filter

command cmd arg arg

in_keys k1,k2,k3

out_keys k1,k2,k3,k4

tag_key ki1

time_key k2

time_format %Y-%m-%d %H:%M:%S
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

134



Parameters
type (required)

The value must be exec_filter.

command (required)

The command (program) to execute. The out_exec_filter plugin passes the incoming event to the program
input and receives the filtered event from the program output.

in_ format

The format used to map the incoming event to the program input.

The following formats are supported:

o tsv (default)
When using the tsv format, please also specify the comma-separated in_keys parameter.
in_keys k1,k2,k3

e json
e msgpack

out_ format

The format used to process the program output.

The following formats are supported:

o tsv (default)
When using the tsv format, please also specify the comma-separated out_keys parameter.
out_keys k1,k2,k3,k4

e json
e msgpack

NOTE: When using the json format, this plugin uses the Yajl library to parse the program output. Yajl
buffers data internally so the output isn’t always instantaneous.

tag_ key

The name of the key to use as the event tag. This replaces the value in the event record.

135



time_ key

The name of the key to use as the event time. This replaces the the value in the event record.

time_ format

The format for event time used when the time_key parameter is specified. The default is UNIX time
(integer).

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

buffer__queue_ limit, buffer chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-

tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different

levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

copy Output Plugin

The copy output plugin copies events to multiple outputs.

136



Example Configuration

out_copy is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type copy
<store>
type file
path /var/log/fluent/myappl
</store>
<store>
</store>
<store>
</store>
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Here is an example set up to send events to both a local file under /var/log/fluent/myapp and the collection
fluentd.test in a local MongoDB instance (Please see the out_ file and out_ mongo articles for more details
about the respective plugins.)

<match myevent.file_and_mongo>
type copy
<store>
type file
path /var/log/fluent/myapp
time_slice_format %Y%mld
time_slice_wait 10m
time_format %Y/m)dT/HAM%SYzZ
compress gzip
utc
</store>
<store>
type mongo
host fluentd
port 27017
database fluentd
collection test
</store>
</match>

Parameters
type (required)

The value must be copy.

137



deep__copy

out_copy shares a record between store plugins by default.

When deep_copy is true, out_copy passes different record to each store plugin.
<store> (at least one required)

Specifies the storage destinations. The format is the same as the <match> directive.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

GeolP Output Plugin

The out_geoip Buffered Output plugin adds geographic location information to logs using the Maxmind
GeolP databases.

Prerequisites

e The GeolP library.

# for RHEL/Cent0S
$ sudo yum install geoip-devel --enablerepo=epel

# for Ubuntu/Debian
$ sudo apt-get install libgeoip-dev

+*

for MacOSX (brew)
$ brew install geoip

Install

out_geoip is not included in td-agent. All users must install the fluent-plugin-geoip gem using the following
command.

$ fluent-gem install fluent-plugin-geoip
OR
$ sudo /usr/lib64/fluent/ruby/bin/fluent-gem install fluent-plugin-geoip

Example Configuration

The configuration shown below adds geolocation information to apache.access

“‘text type geoip geoip_lookup_key host enable key country code geoip_country enable key city
geoip_ city enable key latitude geoip_lat enable key_ longitude geoip lon remove tag prefix test.
add_tag prefix geoip. flush_ interval 5s

138



# original record

test.message {
"host":"66.102.9.80",
"message":"test"

}

# output record

geoip.message: {
"host":"66.102.9.80",
"message":"test",
"geoip_country":"US",
"geoip_city":"Mountain View",
"geoip_lat":37.4192008972168,
"geoip_lon":-122.05740356445312

NOTE: Please see the fluent-plugin-geoip README for further details.

Parameters
geoip__lookup__key (required)

Specifies the geoip lookup field (default: host) If accessing a nested hash value, delimit the key with ¢, as in
‘host.ip”.

remove__tag_ prefix / add_ tag prefix (requires one or the other)

Set tag replace rule.

enable_ key *** (requires at least one)

Specifies the geographic data that will be added to the record. The supported parameters are shown below:

e enable_key_ city

e enable key latitude

e enable key_longitude

e enable_key country_ code3
e enable key country_code
e enable key country_name
e enable key dma_ code

e enable_key_area_ code

e enable key region

include__tag_key

Set to true to include the original tag name in the record. (default: false)

tag_ key

Adds the tag name into the record using this value as the key name When include_tag_key is set to true.

139



Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
Unlike many other output plugins, the buffer_path parameter MUST be specified when using buffer_type
file.

buffer__queue_ limit, buffer_chunk_ limit

The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview
article for the basic buffer structure. The default values are 64 and 256m, respectively. The suffixes “k”
(KB), “m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between forced data flushes. The default is nil (don’t force flush and wait until the end of time
slice + time_slice_ wait). The suffixes “s” (seconds), “m” (minutes), and “h” (hours) can be used.

log_ level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Use Cases

Plot real time access statistics on a world map using Elasticsearch and Kibana The
country_code field is needed to visualize access statistics on a world map using Kibana.

Note: The following plugins are required: * fluent-plugin-geoip * fluent-plugin-elasticsearch

<match td.apache.access>
type geoip

# Set key name for the client ip address values
geoip_lookup_key host

# Specify key name for the country_code values
enable_key_country_code geoip_country

# Swap tag prefix from 'td.' to 'es.'

remove_tag_prefix td.
add_tag_prefix es.
</match>

<match es.apache.access>

type elasticsearch
host localhost
port 9200

140



type_name apache

logstash_format true

flush_interval 10s
</match>

Further Reading

o fluent-plugin-geoip repository

roundrobin Output Plugin

The roundrobin Output plugin distributes events to multiple outputs using a round-robin algorithm.

Example Configuration

out_roundrobin is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type roundrobin

<store>
type tcp
host 192.168.1.21
</store>
<store>
</store>
<store>
</store>
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters
type (required)

The value must be roundrobin.

<store> (required at least one)

Specifies the storage destinations. The format is the same as the <match> directive.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

141


https://github.com/y-ken/fluent-plugin-geoip

stdout Output Plugin

The stdout output plugin prints events to stdout (or logs if launched with daemon mode). This output
plugin is useful for debugging purposes.

Example Configuration

out_stdout is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type stdout
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

type (required) The value must be stdout.

output__type Output format. The following formats are supported:

e json
o hash (Ruby’s hash)

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

null Output Plugin

The null output plugin just throws away events.

Example Configuration

out_null is included in Fluentd’s core. No additional installation process is required.

<match pattern>
type null
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters
type (required)

The value must be null.

142



log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Amazon S3 Output Plugin

The out_s3 Buffered Output plugin writes records into the Amazon S3 cloud object storage service. By
default, it creates files on an hourly basis. This means that when you first import records using the plugin,
no file is created immediately. The file will be created when the time_slice_format condition has been
met. To change the output frequency, please modify the time_slice_format value.

Installation

out_s3 is included in td-agent by default. Fluentd gem users will need to install the fluent-plugin-s3 gem
using the following command.

$ fluent-gem install fluent-plugin-s3

Example Configuration

<match pattern>
type s3

aws_key_id YOUR_AWS_KEY_ID

aws_sec_key YOUR_AWS_SECRET/KEY
s3_bucket YOUR_S3_BUCKET_NAME
s3_endpoint s3-us-west-1.amazonaws.com
path logs/

buffer_path /var/log/fluent/s3

time_slice_format %Ym%d%H
time_slice_wait 10m

utc

buffer_chunk limit 256m
</match>

Please see the Store Apache Logs into Amazon S3 article for real-world use cases.
NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

NOTE: Please make sure that you have enough space in the buffer path directory. Running out of disk
space is a problem frequently reported by users.

Parameters
type (required)

The value must be s3.

143



aws_ key_ id (required/optional)

The AWS access key id. This parameter is required when your agent is not running on an EC2 instance
with an TAM Instance Profile.

aws__sec__key (required/optional)

The AWS secret key. This parameter is required when your agent is not running on an EC2 instance with
an IAM Instance Profile.

s3__bucket (required)

The Amazon S3 bucket name.

buffer__path (required)

The path prefix of the log buffer files.

s3__endpoint

The Amazon S3 endpoint name. Please select the appropriate endpoint name from the list below and confirm
that your bucket has been created in the correct region.

¢ s3.amazonaws.com

e s3-us-west-1.amazonaws.com

e s3-us-west-2.amazonaws.com

¢ s3d.sa-east-1.amazonaws.com

¢ s3-eu-west-1.amazonaws.com

e s3-ap-southeast-1.amazonaws.com
e s3-ap-northeast-1.amazonaws.com

The most recent versions of the endpoints can be found here.

time__slice_ format

The time format used as part of the file name. The following characters are replaced with actual values
when the file is created:

o %Y: year including the century (at least 4 digits)
o %m: month of the year (01..12)

o %d: Day of the month (01..31)

o %H: Hour of the day, 24-hour clock (00..23)

o %M: Minute of the hour (00..59)

o %S: Second of the minute (00..60)

The default format is %Y%m%d%H, which creates one file per hour.

144


http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

time_ slice_ wait
The amount of time Fluentd will wait for old logs to arrive. This is used to account for delays in logs arriving

to your Fluentd node. The default wait time is 10 minutes (‘10m’), where Fluentd will wait until 10 minutes
past the hour for any logs that occured within the past hour.

For example, when splitting files on an hourly basis, a log recorded at 1:59 but arriving at the Fluentd node
between 2:00 and 2:10 will be uploaded together with all the other logs from 1:00 to 1:59 in one transaction,
avoiding extra overhead. Larger values can be set as needed.

time_ format

The format of the time written in files. The default format is ISO-8601.

path

The path prefix of the files on S3. The default is “” (no prefix).

NOTE: The actual path on S3 will be: “{path}{time_slice format}{sequentialnumber}.gz”
utc

Uses UTC for path formatting. The default format is localtime.

store__as

YW

The compression type. The default is “gzip”, but you can also choose “1zo”, “json”, or “txt”.

proxy__uri

The proxy url. The default is nil.

use__ssl

Enable/disable SSL for data transfers between Fluentd and S3. The default is “yes”.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

buffer__queue_ limit, buffer chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer_ chunk_ limit.

145



flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-

tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Further Reading

This page doesn’t describe all the possible configurations. If you want to know about other configurations,
please check the link below.

¢ fluent-plugin-s3 repository

MongoDB Output Plugin

The out_mongo Buffered Output plugin writes records into MongoDB, the emerging document-oriented
database system.

NOTE: If you're using ReplicaSet, please see the out__mongo_ replset article instead.

Why Fluentd with MongoDB?

Fluentd enables your apps to insert records to MongoDB asynchronously with batch-insertion, unlike direct
insertion of records from your apps. This has the following advantages:

1. less impact on application performance
2. higher MongoDB insertion throughput while maintaining JSON record structure

Install

out_mongo is included in td-agent by default. Fluentd gem users will need to install the fluent-plugin-mongo
gem using the following command.

$ fluent-gem install fluent-plugin-mongo

146


https://github.com/fluent/fluent-plugin-s3
http://mongodb.org/

Example Configuration
# Single MongoDB
<match mongo.**>
type mongo
host fluentd
port 27017
database fluentd
collection test
# for capped collection
capped
capped_size 1024m
# authentication
user michael
password jordan
# flush

flush_interval 10s
</match>

Please see the Store Apache Logs into MongoDB article for real-world use cases.

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters
type (required)

The value must be mongo.

host (required)

The MongoDB hostname.

port (required)

The MongoDB port.

database (required)

The database name.

collection (required, if not tag__mapped)

The collection name.

147



capped

This option enables capped collection. This is always recommended because MongoDB is not suited to
storing large amounts of historical data.

capped_size Sets the capped collection size.

user

The username to use for authentication.

password

The password to use for authentication.

tag_ mapped

This option will allow out_ mongo to use Fluentd’s tag to determine the destination collection. For example,
if you generate records with tags ‘mongo.foo’, the records will be inserted into the foo collection within the
fluentd database.

<match mongo.*>
type mongo
host fluentd
port 27017
database fluentd

# Set 'tag_mapped' if you want to use tag mapped mode.
tag_mapped

# If the tag is "mongo.foo", then the prefix "mongo." is removed.

# The inserted collection name is "foo".

remove_tag_prefix mongo.

# This configuration is used if the tag is not found. The default is 'untagged'.

collection misc
</match>

This option is useful for flexible log collection.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

148



buffer _queue_ limit, buffer_ chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-

tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Further Reading

¢ fluent-plugin-mongo repository

MongoDB ReplicaSet Output Plugin

The out_mongo_replset Buffered Output plugin writes records into MongoDB, the emerging document-
oriented database system.

NOTE: This plugin is for users using ReplicaSet. If you are not using ReplicaSet, please see the out_mongo
article instead.

Why Fluentd with MongoDB?

Fluentd enables your apps to insert records to MongoDB asynchronously with batch-insertion, unlike direct
insertion of records from your apps. This has the following advantages:

1. less impact on application performance
2. higher MongoDB insertion throughput while maintaining JSON record structure

149


https://github.com/fluent/fluent-plugin-mongo
http://mongodb.org/

Install

out_mongo_replset is included in td-agent by default. Fluentd gem users will need to install the fluent-
plugin-mongo gem using the following command.

$ fluent-gem install fluent-plugin-mongo

Example Configuration
# Single MongoDB
<match mongo.**>
type mongo_replset
database fluentd
collection test
nodes localhost:27017,localhost:27018,localhost:27019
# flush

flush_interval 10s
</match>

Please see the Store Apache Logs into MongoDB article for real-world use cases.

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.
Parameters

type (required)

The value must be mongo.

nodes (required)

The comma separated node strings (e.g. host1:27017,host2:27017,host3:27017).

database (required)

The database name.

collection (required if not tag_mapped)

The collection name.

capped

This option enables capped collection. This is always recommended because MongoDB is not suited to
storing large amounts of historical data.

capped__size

Sets the capped collection size.

150



user

The username to use for authentication.

password

The password to use for authentication.

tag_ mapped

This option will allow out_ mongo to use Fluentd’s tag to determine the destination collection.

For example, if you generate records with tags ‘mongo.foo’, the records will be inserted into the foo collection
within the fluentd database.

<match mongo.*>
type mongo_replset
database fluentd
nodes localhost:27017,localhost:27018,localhost:27019

# Set 'tag_mapped' if you want to use tag mapped mode.
tag_mapped

# If the tag is "mongo.foo", then the prefix "mongo." is removed.

# The inserted collection name is "foo".
remove_tag_prefix mongo.
# This configuration is used if the tag is not found. The default is 'untagged'.

collection misc
</match>

name

The ReplicaSet name.

read

The ReplicaSet read preference (e.g. secondary, etc).

refresh  _mode

The ReplicaSet refresh mode (e.g. sync, etc).

refresh__interval

The ReplicaSet refresh interval.

num__retries

The ReplicaSet failover threshold. The default threshold is 60. If the retry count reaches this threshold, the
plugin raises an exception.

151



Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer_ type

The buffer type is memory by default (buf memory). The file (buf_file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

buffer__queue_ limit, buffer__chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer_ chunk_ limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait
The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-

tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log_level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Further Readings

e fluent-plugin-webhdfs mongo

rewrite__tag filter Output Plugin

The out_rewrite_tag_filter Output plugin has designed to rewrite tag like mod_rewrite. Re-emit a
record with rewrited tag when a value matches/unmatches with the regular expression. Also you can change
a tag from apache log by domain, status-code(ex. 500 error), user-agent, request-uri, regex-backreference
and so on with regular expression.

152


https://github.com/fluent/fluent-plugin-mongo

How it works

It is a sample to arrange the tags by the regexp matched value of ‘message’.

“‘text # Configuration type rewrite_tag filter rewriterulel message “[(\w+)] $1.${tag}

S + e
| original record | | rewrited tag record |
|- | [-———————
| app.message {"message":"[infol: ..."} | +----> | info.app.message {"message":" [infol: ..."} |

| app.message {"message":"[warn]: ..."} | +----> | warn.app.message {"message":"[warn]: ..."} |

| app.message {"message":"[crit]: ..."} | +-—--> | crit.app.message {"message":"[crit]: ..."} |
| app.message {"message":"[alert]: ..."} | +-——-> | alert.app.message {"message":"[alert]: ..."}
VO + S
Install

out_rewrite_tag_filter is included in td-agent by default (v1.1.18 or later). Fluentd gem users will have
to install the fluent-plugin-rewrite-tag-filter gem using the following command.

$ fluent-gem install fluent-plugin-rewrite-tag-filter
OR
$ sudo /usr/lib64/fluent/ruby/bin/fluent-gem install fluent-plugin-rewrite-tag-filter

Example Configuration

Configuration design is dropping some pattern record first, then re-emit other matched record as new tag
name.

<match apache.access>
type rewrite_tag_filter
capitalize_regex_backreference yes
rewriterulel path \.(gifl|jpe?glpngl|pdflzip)$ clear

rewriterule2 status !~200$ clear
rewriterule3 domain !~.+\.com$ clear
rewriterule4 domain “maps\.example\.com$ site.ExampleMaps
rewriterule5 domain “news\.example\.com$ site.ExampleNews
# it is also supported regexp back reference.
rewriterule6 domain ~(mail)\.(example)\.com$ site.$2$1
rewriterule7 domain .+ site.unmatched
</match>

<match clear>
type null
</match>

NOTE: Please see the README.md for further details.

153



Parameters
rewriteruleN (required at least one)

rewriterule<num> <key> <regex_pattern> <new_tag>

NOTE: It works with the order <num> ascending, regexp matching <regex pattern> for the values of
<key> from each record, re-emit with <new_ tag>.

capitalize_ regex_ backreference

Capitalize letter for every matched regex backreference. (ex: maps -> Maps)

hostname__command

Override hostname command for placeholder. (default setting is long hostname)

log_level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Placeholders

It is supported these placeholder for new_ tag (rewrited tag). See more details at README.md

« ${tag}

« TAG

o {$tag_partsn]}

. TAG_ PARTS|n]
o ${hostname}

« HOSTNAME

Use cases

o Aggregate + display 404 status pages by URL and referrer to find and fix dead links.
e Send an IRC alert for 5xx status codes on exceeding thresholds.

Aggregate + display 404 status pages by URL and referrer to find and fix dead links.

o Collect access log from multiple application servers (configl)
e Sum up the 404 error and output to mongoDB (config2)

Note: These plugins are required to be installed. * fluent-plugin-rewrite-tag-filter * fluent-plugin-mongo

154



[Configl] Application Servers

# Input access log to fluentd with embedded in_tail plugin
<source>

type tail

path /var/log/httpd/access_log

format apache2

time_format %d/%b/%Y:%H:%M:%S %z

tag apache.access

pos_file /var/log/td-agent/apache_access.pos
</source>

# Forward to monitoring server
<match apache.access>
type forward
flush_interval bs
<server>
name server_name
host 10.100.1.20
</server>
</match>

[Config2] Monitoring Server

# built-in TCP input
<source>

type forward
</source>

# Filter record like mod_rewrite with fluent-plugin-rewrite-tag-filter
<match apache.access>

type rewrite_tag_filter

rewriterulel status ~(7!404)$ clear

rewriterule2 path .+ mongo.apache.access.error404
</match>

# Store deadlinks log into mongoDB
<match mongo.apache.access.error404>

type mongo
host 10.100.1.30
database apache
collection deadlinks
capped
capped_size 50m

</match>

# Clear tag

<match clear>
type null

</match>

155



Send an IRC alert for 5xx status codes on exceeding thresholds.

o Collect access log from multiple application servers (configl)
o Sum up the 500 error and notify IRC and logging details to mongoDB (config2)

Note: These plugins are required to be installed. * fluent-plugin-rewrite-tag-filter * fluent-plugin-datacounter
* fluent-plugin-notifier * fluent-plugin-parser * fluent-plugin-mongo * fluent-plugin-irc

[Configl] Application Servers

# Input access log to fluentd with embedded in_tail plugin
# sample results: {"host":"127.0.0.1","user":null, "method":"GET","path":"/","code":500,"size":5039, "refe
<source>
type tail
path /var/log/httpd/access_log
format apache2
time_format %d/%b/%Y:%H:%M:%S %=z
tag apache.access
pos_file /var/log/td-agent/apache_access.pos
</source>

# Forward to monitoring server
<match apache.access>
type forward
flush_interval 5s
<server>
name server_name
host 10.100.1.20
</server>
</match>

[Config2] Monitoring Server

# built-in TCP input
<source>

type forward
</source>

# Filter record like mod_rewrite with fluent-plugin-rewrite-tag-filter
<match apache.access>

type copy

<store>

type rewrite_tag_filter

# drop static image record and redirect as 'count.apache.access'

rewriterulel path ~/(imglcss|js|static|assets)/ clear

rewriterule2 path .+ count.apache.access

</store>

<store>

type rewrite_tag_filter

rewriterulel code ~5\d\d$ mongo.apache.access.errorbxx

</store>

156



</match>

# Store 5xx error log into mongoDB
<match mongo.apache.access.errorb5xx>

type mongo

host 10.100.1.30

database apache

collection error_bxx

capped

capped_size 50m
</match>

# Count by status code
# sample results: {"unmatched_count":0,"unmatched_rate":0.0,"unmatched_percentage":0.0,"200_count":0,"20
<match count.apache.access>
type datacounter
unit minute
outcast_unmatched false
aggregate all
tag threshold.apache.access
count_key code
patternl 200 ~200%
pattern2 2xx ~2\d\d$
pattern3 301 ~301$
patternd 302 ~302%
pattern5 3xx ~3\d\d$
pattern6 403 ~403$
pattern7 404 ~404$
pattern8 410 ~410%
pattern9 4xx ~4\d\d$
pattern1O 5xx ~5\d\d$
</match>

# Determine threshold
# sample results: {"pattern":"code_500","target_tag":"apache.access","target_key":"5xx_count","check_typ
<match threshold.apache.access>
type notifier
input_tag_remove_prefix threshold
<def>
pattern code_500
check numeric_upward
warn_threshold 10
crit_threshold 40
tag alert.http_b5xx_error
target_key_pattern ~5xx_count$
</def>
</match>

# Generate message
# sample results: {"message":"HTTP Status warn [5xx_count] apache.access: 1.0 (threshold 1.0)"}
<match alert.http_bxx_error>

type deparser

tag irc.http_bxx_error>

format_key_names level,target_key,target_tag,value,threshold

157



format HTTP Status %s [%s] %s: %s (threshold %s)
key_name message
reserve_data no

</match>

# Send IRC message

<match irc.http_bxx_error>
type irc
host localhost
port 6667
channel fluentd
nick fluentd
user fluentd
real fluentd
message %s
out_keys message

</match>

# Clear tag
<match clear>
type null

</match>

HDFS (WebHDFS) Output Plugin

The out_webhdfs Buffered Output plugin writes records into HDFS (Hadoop Distributed File System). By
default, it creates files on an hourly basis. This means that when you first import records using the plugin,
no file is created immediately. The file will be created when the time_slice_format condition has been
met. To change the output frequency, please modify the time_slice_format value.

Install

out_webhdfs is included in td-agent by default (v1.1.10 or later). Fluentd gem users will have to install the
fluent-plugin-webhdfs gem using the following command.

$ fluent-gem install fluent-plugin-webhdfs

HDFS Configuration

Append operations are not enabled by default on CDH. Please put these configurations into your hdfs-site.xml
file and restart the whole cluster.

<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>

</property>

<property>

<name>dfs.support.append</name>
<value>true</value>

158



</property>

<property>
<name>dfs.support.broken.append</name>
<value>true</value>

</property>

Example Configuration

<match access.**>
type webhdfs
host namenode.your.cluster.local
port 50070
path /path/on/hdfs/access.log.%Y%m%d_%H.${hostname}.log

flush_interval 10s
</match>

Please see the Fluentd + HDFS: Instant Big Data Collection article for real-world use cases.

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.
Parameters

type (required)

The value must be webhfds.

host (required)

The namenode hostname.

port (required)

The namenode port number.

path (required)

The path on HDFS. Please include ${hostname} in your path to avoid writing into the same HDF'S file from
multiple Fluentd instances. This conflict could result in data loss.

Buffer Parameters

For advanced usage, you can tune Fluentd’s internal buffering mechanism with these parameters.

buffer__type

The buffer type is memory by default (buf memory). The file (buf file) buffer type can be chosen as well.
The path parameter is used as buffer_path in this plugin.

159



buffer _queue_ limit, buffer_ chunk_ limit
The length of the chunk queue and the size of each chunk, respectively. Please see the Buffer Plugin Overview

article for the basic buffer structure. The default values are 64 and 8m, respectively. The suffixes “k” (KB),
“m” (MB), and “g” (GB) can be used for buffer chunk limit.

flush__interval

The interval between data flushes. The default is 60s. The suffixes “s” (seconds), “m” (minutes), and “h”
(hours) can be used.

retry_ wait, retry_ limit and max_ retry_ wait

The interval between write retries, and the number of retries. The default values are 1.0 and 17, respec-
tively. retry_wait doubles every retry (e.g. the last retry waits for 131072 sec, roughly 36 hours), and
max_retry_wait may be used to limit the maximum retry interval.

num__threads

The number of threads to flush the buffer. This option can be used to parallelize writes into the output(s)
designated by the output plugin. The default is 1.

log__level option (Fluentd v0.10.43 and above) The log_level option allows the user to set different
levels of logging for each plugin. The supported log levels are: fatal, error, warn, info, debug, and trace.

Please see the logging article for further details.

Further Reading

o fluent-plugin-webhdfs repository
e Slides: Fluentd and WebHDF'S

Other Output Plugins

Please refer to this list of available plugins to find out about other Output plugins.

e Fluentd plugins

Buffer Plugin Overview
Fluentd has 3 types of plugins: Input, Output, and Buffer. This article gives an overview of Buffer Plugin.

We will first explain how Buffer Plugin works in general. Then, we will explain the mechanism of Time
Sliced Plugin, a subclass of Buffer Plugin used by several core plugins.

160


https://github.com/fluent/fluent-plugin-webhdfs
http://www.slideshare.net/tagomoris/fluentd-and-webhdfs
http://fluentd.org/plugin/

Buffer Plugin Overview

Buffer plugins are used by buffered output plugins, such as out_file, out_forward, etc. Users can choose
the buffer plugin that best suits their performance and reliability needs.

Buffer Structure

The buffer structure is a queue of chunks like the following:

chunk |
chunk |

chunk --> write out the bottom chunk

When the top chunk exceeds the specified size or time limit (buffer_chunk_limit and flush_interval,
respectively), a new empty chunk is pushed to the top of the queue. The bottom chunk is written out
immediately when new chunk is pushed.

If the bottom chunk write out fails, it will remain in the queue and Fluentd will retry after waiting several
seconds (retry_wait). If the retry count exceeds the specified limit (retry_limit), the chunk is trashed.
The retry wait time doubles each time (1.0sec, 2.0sec, 4.0sec, ...). If the queue length exceeds the specified
limit (buffer_queue_limit), new events are rejected.

All buffered output plugins support the following parameters:

<match pattern>
buffer_type memory
buffer_chunk limit 256m
buffer_queue_limit 128
flush_interval 60s
retry_limit 17
retry_wait 1s

</match>

buffer_type specifies the buffer plugin to use. The memory Buffer plugin is used by default. You can also
specify file as the buffer type alongside the buffer_path parameter as follows:

<match pattern>

buffer_type file

buffer_path /var/fluentd/buffer/ #make sure fluentd has write access to the directory!
</match>
The suffixes “s” (seconds), “m” (minutes), and “h” (hours) can be used for flush_interval and retry_wait.
retry_wait can also be a decimal value.

The suffixes “k” (KB), “m” (MB), and “g” (GB) can be used for buffer_chunk_limit.

161



Time Sliced Plugin Overview

Time Sliced Plugin is a type of Buffer Plugin, so, it has the same basic buffer structure as Buffer Plugin.

In addition, each chunk is keyed by time and flushed when that chunk’s timestamp has passed. This is
different from This immediately raises a couple of questions.

1. How do we specify the granularity of time chunks? This is done through the time_slice_format
option, which is set to “%Y%m%d” (daily) by default. If you want your chunks to be hourly,
“%Y %m%d%H” will do the job.

2. What if new logs come after the time corresponding the current chunk? For example, what happens
to an event, timestamped at 2013-01-01 02:59:45 UTC, comes in at 2013-01-01 03:00:15 UTC? Would
it make into the 2013-01-01 02:00:00-02:59:59 chunk?

This issue is addressed by setting the time_slice_wait parameter. time_slice_wait sets, in seconds, how
long fluentd waits to accept “late” events into the chunk past the max time corresponding to that chunk. The
default value is 600, which means it waits for 10 minutes before moving on. So, in the current example, as
long as the events come in before 2013-01-01 03:10:00, it will make it in to the 2013-01-01 02:00:00-02:59:59
chunk.

Alternatively, you can also flush the chunks regularly using flush_interval. Note that flush_interval
and time_slice_wait are mutually exclusive. If you set flush_interval, time_slice_wait will be ignored
and fluentd would issue a warning.

Notes

If you are curious which core output plugin use Buffered and which are Time Sliced, please see the list here

List of Buffer Plugins

e buf memory
e buf file

memory Buffer Plugin

The memory buffer plugin provides a fast buffer implementation. It uses memory to store buffer chunks.
When Fluentd is shut down, buffered logs that can’t be written quickly are deleted.

Example Config

<match pattern>
buffer_type memory
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

buffer_type (required) The value must be memory.

162


http://docs.fluentd.org/articles/output-plugin-overview#overview

buffer__chunk_ limit The size of each buffer chunk. The default is 8m. The suffixes “k” (KB), “m” (MB),
and “g” (GB) can be used. Please see the Buffer Plugin Overview article for the basic buffer structure.

buffer__queue_ limit The length limit of the chunk queue. Please see the Buffer Plugin Overview article
for the basic buffer structure. The default limit is 64 chunks.

113 ”

flush__interval The interval between data flushes. The suffixes “s” (seconds), “m” (minutes), and “h”

(hours) can be used

flush__at_ shutdown If true, queued chunks are flushed at shutdown process. The default is true. If
false, queued chunks are dicarded unlike buf_file.

W ” «“

retry__wait The interval between retries. The suffixes “s” (seconds),
be used.

m” (minutes), and “h” (hours) can

file Buffer Plugin

The file buffer plugin provides a persistent buffer implementation. It uses files to store buffer chunks on
disk.

Example Config
<match pattern>
buffer_type file

buffer_path /var/log/fluent/myapp.*.buffer
</match>

NOTE: Please see the Config File article for the basic structure and syntax of the configuration file.

Parameters

buffer__type (required) The value must be file.

buffer__path (required) The path where buffer chunks are stored. The “* is replaced with random
characters. This parameter is required.

buffer_ chunk_ limit The size of each buffer chunk. The default is 256m. The suffixes “k” (KB), “m”
(MB), and “g” (GB) can be used. Please see the Buffer Plugin Overview article for the basic buffer structure.

buffer queue_ limit The length limit of the chunk queue. Please see the Buffer Plugin Overview article
for the basic buffer structure. The default limit is 256 chunks.

[13

flush__interval The interval between data flushes. The suffixes “s” (seconds), “m” (minutes), and “h”

(hours) can be used

163



flush__at_ shutdown If true, queued chunks are flushed at shutdown process. The default is false.

[3bi

retry__wait The interval between retries. The suffixes “s” (seconds), “m” (minutes), and “h” (hours) can
be used.

Writing plugins

Installing custom plugins

To install a plugin, please put the ruby script in the /etc/fluent/plugin directory.

Alternatively, you can create a Ruby Gem package that includes a 1ib/fluent/plugin/<TYPE>_<NAME>.rb
file. The TYPFE is in for input plugins, out for output plugins, and buf for buffer plugins. For example, an
eMail Output plugin would have the path: 1ib/fluent/plugin/out_mail.rb. The packaged gem can be
distributed and installed using RubyGems. For further information, please see the list of Fluentd plugins.

Writing Input Plugins

Extend the Fluent::Input class and implement the following methods.

class SomelInput < Fluent::Input
# First, register the plugin. NAME is the name of this plugin
# and identifies the plugin in the configuration file.
Fluent::Plugin.register_input('NAME', self)

# This method is called before starting.
# 'conf' is a Hash that includes configuration parameters.
# If the configuration is invalid, raise Fluent::ConfigError.
def configure(conf)
super
@port = conf['port']

end
# This method is called when starting.
# Open sockets or files and create a thread here.
def start
super
end
# This method %s called when shutting down.
# Shutdown the thread and close sockets or files here.

def shutdown

end
end

To submit events, use the Fluent: :Engine.emit(tag, time, record) method, where tag is the String,
time is the UNIX time integer and record is a Hash object.

164


http://fluentd.org/plugin/

tag = "myapp.access"

time = Time.now.to_i

record = {"message'"=>"body"}
Fluent::Engine.emit(tag, time, record)

The RDoc of the Engine class can be found in the Fluentd RDoc.

Writing Buffered Output Plugins

Extend the Fluent::BufferedOutput class and implement the following methods.

class SomeOutput < Fluent::BufferedOutput
# First, register the plugin. NAME is the name of this plugin
# and identifies the plugin in the configuration file.
Fluent::Plugin.register_output('NAME', self)

# Thtis method ts called before starting.
# 'conf' is a Hash that includes configuration parameters.
# If the configuration is invalid, raise Fluent::ConfigError.
def configure(conf)
super
@path = conf ['path']

end

# This method ts called when starting.
# Open sockets or files here.
def start

super

end

# Thts method %s called when shutting down.
# Shutdown the thread and close sockets or files here.
def shutdown

super

end

# Thts method is called when an event reaches to Fluentd.
# Convert the event to a raw string.
def format(tag, time, record)
[tag, time, record].to_json + "\n"
## Alternatively, use msgpack to serialize the object.
# [tag, time, record].to_msgpack
end

## Instead of the above method, you could instead tmplement this method,
## which is called by fluentd to process a collection of events.

#def format_stream(tag, es)

# es.each {/time, record/

# [tag, time, record].to_json + "\n"

# # Alternatively, use msgpack to serialize the object.

165


http://fluentd.org/rdoc/Fluent/EngineClass.html

# # [tag, time, record].to_msgpack
# }
#end

# Thts method is called every flush interval. Write the buffer chunk
# to files or databases here.
# 'chunk' is a buffer chunk that includes multiple formatted
# events. You can use 'data = chunk.read' to get all events and
# 'chunk.open {[iol ... }' to get IO objects.
def write(chunk)
data = chunk.read
print data
end

## Optionally, you can use chunk.msgpack_each to deserialize objects.
#def write(chunk)
# chunk.msgpack_each {/(tag,time,record)/

# F
#end
end

Writing Time Sliced Output Plugins

Time Sliced Output plugins are extended versions of buffered output plugins. One example of a time sliced
output is the out_file plugin.

Note that Time Sliced Output plugins use file buffer by default. Thus the buffer_path option is required.

To implement a Time Sliced Output plugin, extend the Fluent::TimeSlicedOutput class and implement
the following methods.

class SomeOutput < Fluent::TimeSlicedOutput
# configure(conf), start(), shutdown() and format(tag, time, record) are
# the same as BufferedOutput.

# You can use 'chunk.key' to get sliced time. The format of 'chunk.key'
# can be configured by the 'time_format' option. The default format ts JYZmJd.
def write(chunk)

day = chunk.key

end
end

Writing Non-buffered Output Plugins

Extend the Fluent::Output class and implement the following methods.

class SomeQutput < Fluent::0Output
# First, register the plugin. NAME is the name of this plugin
# and tdentifies the plugin in the configuration file.

166



Fluent::Plugin.register_output ('NAME', self)

# This method ts called before starting.
def configure(conf)
super

end

# This method ts called when starting.
def start
super

end

# This method ts called when shutting down.
def shutdown
super

end

# Thts method ts called when an event reaches Fluentd.
# 'es' is a Fluent::EventStream object that includes multiple events.
# You can use 'es.each {/time,record/ ... }' to retrieve events.
# 'chain' ts an object that manages transactions. Call 'chain.next' at
# appropriate points and rollback if it raises an exception.
def emit(tag, es, chain)

chain.next

es.each {|time,record|

$stderr.puts "OK!"

}

end
end

Customizing the Tail Input Plugin Parser

You can customize the text parser for the Tail Input plugin by extending the Fluent::Taillnput class.

Put the following file into /etc/fluent/plugin/in__mytail.rb.

class MyTaillnput < Fluent::TailInput
Fluent::Plugin.register_input('mytail', self)

# Override the 'configure_parser(conf)' method.
# You can get config parameters in this method.
def configure_parser (conf)
@time_format = conf['time format'] || '%Y-Y%M-%d %H:%M:%S'
end

# Override the 'parse_line(line)' method that returns the time and record.
# Thts example method assumes the following log format:

#  XY-Jm-Jd JH:ZM:7S\tkeyl\tvaluel\tkey2\tvalue2. ..

#  JY-Zm=Jd JH:JM:%S\tkeyl\tvaluel\tkey2\tvalue2. ..

# oL

def parse_line(line)

167



elements = line.split("\t")

time = elements.shift
Time.strptime(time, Otime_format).to_i

time

# [k1, v1, k2, v2, ...] -> {k1=>vl, k2=>v2, ...}

record = {}

while (k = elements.shift) && (v = elements.shift)
record(k] = v

end

return time, record
end
end

Use the following configuration file:

<source>
type mytail
path /path/to/myformat_file
tag myapp.mytail

</source>

Logging

In the past, Fluentd used $1log objects to output logs. Fluentd (v0.10.43 and above) now provides the log
method to support the plugin-specific log_level parameter. Newer plugins should use the log method
instead of $log objects:

log.info "setup foo plugin"

Supporting Older Fluentd Versions

The log method only works with Fluentd v0.10.43 or above. Please use the following code in your plugin
to support older Fluentd versions:

module Fluent
module FooPluginOutput < Output
# Define “log™ method for v0.10.42 or earlier
unless method_defined?(:log)
define_method(:log) { $log }
end

end
end

This code defines the log method using $log when the log method is not defined, so log.error becomes
$log.error for older Fluentd versions.

168



Debugging plugins
Run fluentd with the -vv option to show debug messages:
$ fluentd -vv

The stdout and copy output plugins are useful for debugging. The stdout output plugin dumps matched
events to the console. It can be used as follows:

# You want to debug this plugin.
<source>

type your_custom_input_plugin
</source>

# Dump all events to stdout.
<match **>

type stdout
</match>

The copy output plugin copies matched events to multiple output plugins. You can use it in conjunction
with the stdout plugin:

<source>

type tcp
</source>

# Use the tcp Input plugin and the fluent-cat command to feed events:
# $ echo '{"event":"message"}' | fluent-cat test.tag
<match test.tag>

type copy

# Dump the matched events.
<store>

type stdout
</store>

# Feed the dumped events to your plugin.
<store>
type your_custom_output_plugin

</store>
</match>

Writing test cases
Fluentd provides unit test frameworks for plugins:

Fluent::Test::InputTestDriver
Test driver for input plugins.

Fluent: :Test: :BufferedOutputTestDriver
Test driver for buffered output plugins.

Fluent::Test: :OutputTestDriver
Test driver for non-buffered output plugins.

169



Please see Fluentd’s source code for details.

Further Reading

e Slides: Dive into Fluentd Plugin

Community

Fluentd has a thriving developer and user community. Here are some ways to come join the conversation!

Get in Touch Whether you have technical questions or just want to mingle with fellow community
members, we’'ve got you covered.

e Fluentd Google Groups

o Twitter (#fluentd, [@fluentd](http://www.twitter.com/fluentd))
e Facebook Page

o StackOverflow

Share Help others learn about the value of Fluentd by sharing what you’ve built!

Whether it be a company/community tech talk, a conference talk proposal, or a blog article, if you
have a great story to tell we’ll be happy to help spread the word. Tweet us at (#fluentd and [@flu-
entd](http://www.twitter.com/fluentd)) about how you are using Fluentd!

Meetup Our meetups are a great way to mingle with fellow Fluentd developers and users. Come share
your ideas, discuss your challenges, and learn from each other.

e Fluentd User Group in San Francisco

Contribute An Open Source project like Fluentd couldn’t exist without contributions from the developer
community. Take a look at our source code repository and issue list, and consider submitting a patch.

e Source Code
o Bug/Feature Tracker

We run the documentation as an open source project as well. We encourage and appreciate any improvements,
big or small. Make a pull request!

e Documentation Souce Code

Mailing List

Please join the Fluentd Google Group to share your ideas and feedback within the Fluentd community!

170


http://www.slideshare.net/repeatedly/fluentd-meetup-dive-into-fluent-plugin
https://groups.google.com/forum/?fromgroups#!forum/fluentd
https://twitter.com/search?q=%23fluentd&src=typd&f=realtime
https://www.facebook.com/pages/Fluentd-Log-Everything-in-JSON/196064987183037
http://stackoverflow.com/questions/tagged/fluentd?sort=newest
https://twitter.com/search?q=%23fluentd&src=typd&f=realtime
http://www.meetup.com/Fluentd-User-Group/
http://github.com/fluent/fluentd
https://github.com/fluent/fluentd/issues?state=open
http://github.com/fluent/fluentd-docs
https://groups.google.com/forum/?fromgroups#!forum/fluentd

Source Code
The Fluentd Source Code is managed on github. The project organization can be found here.

o github.com/fluent/
o github.com/fluent/fluentd

Bug Tracking

Github Issues is used for tracking bugs. Please report any bugs or send pull requests here.

ChangeLog

Fluentd ChangeLog

Fluentd’s ChangeLog can be found here.

td-agent ChangelLog

td-agent’s ChangeLog can be found here.

171


https://github.com/fluent/
http://github.com/fluent/
http://github.com/fluent/fluentd
https://github.com/fluent/fluentd/issues
https://github.com/fluent/fluentd/blob/master/ChangeLog
http://docs.treasuredata.com/articles/td-agent-changelog

	Overview of Fluentd
	Quickstart Guide
	Step1: Installing Fluentd
	Step2: Use Cases
	Step3: Learn More

	Before Installing Fluentd
	Set Up NTP
	Increase Max # of File Descriptors
	Optimize Network Kernel Parameters

	Installing Fluentd Using rpm Package
	What is td-agent?
	Step0: Before Installation
	Step1: Install from rpm Repository
	Step2: Launch Daemon
	Step3: Post Sample Logs via HTTP
	Next Steps

	Installing Fluentd Using deb Package
	What is td-agent?
	Step0: Before Installation
	GPG key

	Step1 (Ubuntu): Install from Apt Repository
	Step2: Launch Daemon
	Step3: Post Sample Logs via HTTP
	Next Steps

	Installing Fluentd Using Ruby Gem
	Step0: Before Installation
	Step1: Install Ruby interpreter
	Step2: Install Fluentd gem
	Step3: Run
	Next Steps

	Installing Fluentd Using Chef
	Step0: Before Installation
	Step1: Import Recipe
	Step2: Run chef-client
	Next Steps

	Installing Fluentd using Homebrew (MacOS X)
	What is td-agent?
	Step1: Install Homebrew
	Step2: Install td-agent
	Step3: Post Sample Logs via HTTP
	Next Steps

	Installing Fluentd from Source
	Step1: Install Ruby interpreter
	Step2: Fetch Source Code
	Step3: Build and Install
	Step4: Run
	Next Steps

	Install Fluentd (td-agent) on Heroku
	Create Your App
	Test

	Installing Fluentd (td-agent) on Elastic Beanstalk
	Fluentd Users
	Backplane, Inc.
	ContextLogic, Inc.
	CyberAgent, Inc.
	DeNA Co., Ltd.
	Drecom Co., Ltd.
	GREE, Inc.
	LINE Corporation.
	Livesense, Inc.
	NAMCO BANDAI Studios Inc.
	Nintendo, Inc.
	PPLive, Inc.
	SlideShare, Inc.
	Uken Games
	Viki, Inc.

	FAQ
	Fluentd Core
	Fluentd is written in Ruby. Is it slow?
	Does Fluentd run on Windows?
	How can I collect logs from a Windows Machine?
	Does Fluentd have UI or storage?
	What is Fluentd's `tag'?
	How can I estimate Fluentd's resource usage?
	How is Fluentd's performance?

	Treasure Agent(td-agnt)
	What are the differences between td-agent and Fluentd?
	Should I use td-agent or the Fluentd gem?

	Fluentd compared to other projects
	What's the difference between Logstash and Fluentd?
	What's the difference between Scribe and Fluentd?
	What's the difference between Kafka and Fluentd?
	What's the difference between Flume and Fluentd?
	What's the difference between Splunk and Fluentd?

	Operations
	I have a weird timestamp value, what happened?
	I installed td-agent and want to add custom plugins. How do I do it?
	How can I match (send) an event to multiple outputs?

	Plugin Development
	How do I develop a custom plugin?


	Data Import from Ruby Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-ruby
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from Python Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-python
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from PHP Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-php
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from Perl Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using Fluent::Logger
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from Node.js Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-node
	Obtaining the Most Recent Version
	A Sample Application

	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from Java Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-java
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Data Import from Scala Applications
	Prerequisites
	Installing Fluentd
	Modifying the Config File
	Using fluent-logger-scala
	Production Deployments
	Output Plugins
	High-Availablability Configurations of Fluentd
	Monitoring


	Free Alternative to Splunk Using Fluentd
	Prerequisites
	Java for Elasticsearch

	Set Up Elasticsearch
	Setup Kibana
	Setup Fluentd (td-agent)
	Setup rsyslogd
	Store and Search Event Logs
	Demo Environment
	Conclusion
	Learn More

	How To Filter Or Modify Data Inside Fluentd (Apache as an Example)
	Scenario: Filtering Data by the Value of a Field
	Solution: Use fluent-plugin-grep
	Scenario: Adding a New Field (such as hostname)
	Solution: Use fluent-plugin-record-modifier

	Splunk-like Grep-and-Alert-Email System Using Fluentd
	Installing the Needed Plugins
	Configuration
	Configuration File: Soup to Nuts
	What the Configuration File Does

	Testing
	What's Next?

	Cloud Big Data Analytics with Treasure Data
	Background
	Architecture
	Install
	Signup
	Fluentd Configuration
	HTTP Input
	Treasure Data Output

	Test
	Conclusion
	Learn More

	Store Apache Logs into Amazon S3
	Background
	Mechanism
	Install
	Configuration
	Tail Input
	Amazon S3 Output

	Test
	Conclusion
	Learn More

	Store Apache Logs into MongoDB
	Background
	Mechanism
	Install
	Configuration
	Tail Input
	MongoDB Output

	Test
	Conclusion
	Learn More

	Fluentd + HDFS: Instant Big Data Collection
	Background
	Architecture
	Install
	Fluentd Configuration
	HTTP Input
	WebHDFS Output

	HDFS Configuration
	Test
	Conclusion
	Learn More

	Store Apache Logs into Riak
	Prerequisites
	Installing the Fluentd Riak Output Plugin
	Rubygems Users
	td-agent Users

	Configuring Fluentd
	Testing
	Learn More

	Collecting Log Data from Windows
	Prerequisites
	Setup
	Set up a Linux server with rsyslogd and Fluentd
	Set up nxlog on Windows
	Test
	Next Step

	Learn More

	Cloud Data Logger by Raspberry Pi
	Install Raspbian
	Install Fluentd
	Configure and Launch Fluentd
	Upload Test
	Conclusion
	Learn More

	Collecting GlusterFS Logs with Fluentd
	Background
	Setting up Fluentd on GlusterFS Nodes
	Step 1: Installing Fluentd
	Step 2: Making GlusterFS Log Files Readable by Fluentd
	Step 3: Setting Up the Aggregator Fluentd Server

	Acknowledgement
	Learn More

	Configuration File
	Overview
	Config File Location
	List of Directives
	(1) ``source'': where all the data come from
	(2) ``match'': Tell fluentd what to do!
	Match Pattern: how you control the event flow inside fluentd
	Match Order

	(3) Re-use your config: the ``include'' directive
	Supported Data Types for Values
	V1 Format
	Multi line support for array and hash values
	"foo" is interpreted as foo, not "foo"
	Allow # in string value
	Embedded Ruby code
	\ is escape character


	Logging of Fluentd
	Log Level
	Global Logs
	Increase Verbosity Level
	Decrease Verbosity Level

	Per Plugin Log (Fluentd v0.10.43 and above)
	Suppress repeated stacktrace
	Output to log file
	Capture Fluentd logs

	Monitoring Fluentd
	Monitoring Agent
	Process Monitoring
	Port Monitoring
	Debug Port


	Fluentd's Signal Handling
	Process Model
	Signals
	SIGINT or SIGTERM
	SIGUSR1
	SIGHUP


	Fluentd High Availability Configuration
	Message Delivery Semantics
	Network Topology
	Log Forwarder Configuration
	Log Aggregator Configuration
	Failure Case Scenarios
	Forwarder Failure
	Aggregator Failure

	Trouble Shooting
	``no nodes are available''


	Failure Scenarios
	Apps Cannot Post Records to Forwarder
	Forwarder or Aggregator Fluentd Goes Down
	Storage Destination Goes Down

	Performance Tuning
	Check top command
	Multi Process

	Plugin Management
	fluent-gem
	If Using td-agent, Use /usr/lib/fluent/ruby/bin/fluent-gem

	``-p'' option
	Add a Plugin Via /etc/fluent/plugin
	If Using td-agent, Use /etc/td-agent/plugin

	``–gemfile'' option

	Troubleshooting Fluentd
	Look at Logs
	Turn on Verbose Logging
	rpm
	deb
	gem


	Input Plugin Overview
	Overview
	List of Input Plugins
	Other Input Plugins

	forward Input Plugin
	Example Configuration
	Parameters
	Protocol


	Secure Forward Input
	Example Configurations
	Minimalist Configuration
	Check username/password from Clients
	Deny Unknown Source IP/hosts

	Parameters
	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads


	http Input Plugin
	Example Configuration
	Parameters
	time query parameter


	Unix Domain Socket Input Plugin
	Example Configuration
	Parameters


	tail Input Plugin
	Example Configuration
	How it Works
	Parameters
	pos_file (highly recommended)


	exec Input Plugin
	Example Configuration
	Parameters


	syslog Input Plugin
	Example Configuration
	Parameters


	scribe Input Plugin
	Install
	Example Configuration
	Parameters


	Multiprocess Input Plugin
	Install
	Example Configuration
	Parameters


	Other Input Plugins
	Output Plugin Overview
	Overview
	secondary output

	List of Non-Buffered Output Plugins
	List of Buffered Output Plugins
	List of Time Sliced Output Plugins
	Other Plugins

	file Output Plugin
	Example Configuration
	Parameters
	type (required)
	path (required)
	time_slice_format
	time_slice_wait
	time_format
	utc
	compress

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads


	forward Output Plugin
	Example Configuration
	Parameters
	type (required)
	<server> (at least one is required)
	<secondary> (optional)
	send_timeout
	recover_wait
	heartbeat_type
	heartbeat_interval
	phi_failure_detector
	phi_threshold
	hard_timeout
	standby

	Troubleshooting
	``no nodes are available''


	Secure Forward Output
	Example Configurations
	Minimalist Configuration
	Multiple Forward Destinations over SSL

	Parameters
	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads


	exec Output Plugin
	Example Configuration
	Parameters
	type (required)
	command (required)
	format
	tag_key
	time_key
	time_format

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads


	exec_filter Output Plugin
	Example Configuration
	Parameters
	type (required)
	command (required)
	in_format
	out_format
	tag_key
	time_key
	time_format

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads


	copy Output Plugin
	Example Configuration
	Parameters
	type (required)
	deep_copy
	<store> (at least one required)


	GeoIP Output Plugin
	Prerequisites
	Install
	Example Configuration
	Parameters
	geoip_lookup_key (required)
	remove_tag_prefix / add_tag_prefix (requires one or the other)
	enable_key_*** (requires at least one)
	include_tag_key
	tag_key

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval

	Use Cases
	Further Reading

	roundrobin Output Plugin
	Example Configuration
	Parameters
	type (required)
	<store> (required at least one)


	stdout Output Plugin
	Example Configuration
	Parameters


	null Output Plugin
	Example Configuration
	Parameters
	type (required)


	Amazon S3 Output Plugin
	Installation
	Example Configuration
	Parameters
	type (required)
	aws_key_id (required/optional)
	aws_sec_key (required/optional)
	s3_bucket (required)
	buffer_path (required)
	s3_endpoint
	time_slice_format
	time_slice_wait
	time_format
	path
	utc
	store_as
	proxy_uri
	use_ssl

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads

	Further Reading

	MongoDB Output Plugin
	Why Fluentd with MongoDB?
	Install
	Example Configuration
	Parameters
	type (required)
	host (required)
	port (required)
	database (required)
	collection (required, if not tag_mapped)
	capped
	user
	password
	tag_mapped

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads

	Further Reading

	MongoDB ReplicaSet Output Plugin
	Why Fluentd with MongoDB?
	Install
	Example Configuration
	Parameters
	type (required)
	nodes (required)
	database (required)
	collection (required if not tag_mapped)
	capped
	capped_size
	user
	password
	tag_mapped
	name
	read
	refresh_mode
	refresh_interval
	num_retries

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads

	Further Readings

	rewrite_tag_filter Output Plugin
	How it works
	Install
	Example Configuration
	Parameters
	rewriteruleN (required at least one)
	capitalize_regex_backreference
	hostname_command

	Placeholders
	Use cases

	HDFS (WebHDFS) Output Plugin
	Install
	HDFS Configuration
	Example Configuration
	Parameters
	type (required)
	host (required)
	port (required)
	path (required)

	Buffer Parameters
	buffer_type
	buffer_queue_limit, buffer_chunk_limit
	flush_interval
	retry_wait, retry_limit and max_retry_wait
	num_threads

	Further Reading

	Other Output Plugins
	Buffer Plugin Overview
	Buffer Plugin Overview
	Buffer Structure
	Time Sliced Plugin Overview
	Notes
	List of Buffer Plugins

	memory Buffer Plugin
	Example Config
	Parameters


	file Buffer Plugin
	Example Config
	Parameters


	Writing plugins
	Installing custom plugins
	Writing Input Plugins
	Writing Buffered Output Plugins
	Writing Time Sliced Output Plugins
	Writing Non-buffered Output Plugins
	Customizing the Tail Input Plugin Parser
	Logging
	Supporting Older Fluentd Versions

	Debugging plugins
	Writing test cases
	Further Reading

	Community
	Mailing List
	Source Code
	Bug Tracking
	ChangeLog
	Fluentd ChangeLog
	td-agent ChangeLog


