
1

Magnolia in a Can
Containerization with Magnolia

WHITE PAPER

Magnolia in a Can

Contents
3	 Magnolia in a Can

4	 Image Ingredients

4	 Decision #1: Choose a Docker base image

6	 Decision #2: Choose a database for the JCR repository

7	 Decision #2.1: Determine whether to run Magnolia and its database in the
same container or in separate containers

9	 Decision #3: Choose an application server

9	 Decision #4: Choose a Java version

11	 Containerizing Your Magnolia Web App

11	 Enable Auto Update

12	 Configure the Magnolia License

15	 Magnolia properties and containerization

20	 JVM settings

22	 Docker container runtime settings

23	 Containerizing Your Content

24	 Capturing content: backup and restore

26	 Synchronizing content

28	 Containerizing Your Light Content

31	 Hacking Magnolia

31	 Making Magnolia work on Alpine

36	 Running Magnolia in memory-limited containers

2

Magnolia in a Can

Scalability, standardization of deployment, operational environments and
ease of management are all excellent reasons to containerize Magnolia.

Magnolia can be containerized and run in tools like Docker, but there is
no “one size fits all” way of going about it. Much depends on how you
would like to deploy and run Magnolia and what your CI/CD pipeline
looks like.

Since there’s no “one size fits all” solution that could cover all or even
most situations, we don’t provide a public Docker image for Magnolia to
base your container on.

But don’t despair, we’ve outlined the possibilities and choices for
containerizing Magnolia, their pros and cons and what we consider to be
“best practices” in building a Docker container for Magnolia.

You’ll learn how you can containerize Magnolia to work in your
environment, with your requirements and constraints, and hopefully
avoid some common pitfalls when operating Magnolia.

This guide isn’t an introduction to Docker and containers, but we don’t
assume you know everything about Magnolia. Features useful to con
tainerizing and operating Magnolia are highlighted and explained here.

Magnolia in a Can

3

Magnolia in a Can

Image Ingredients
Magnolia needs the following to run in a Docker container:

	• Java
	• Tomcat or another web application container
	• A relational database for the JCR repository (or an embedded

database)
	• Environment setup

These ingredients will go into your Docker image but can be combined in
different ways, depending on your needs and preferences.

So, let’s dive in and start to pick the ingredients for our Docker image.

Decision #1: Choose a Docker base image

There are several options when picking a base image:

1.	 Go for an image already containing one of your basic Magnolia
ingredients, such as Tomcat or a relational database to build up your
Magnolia image

2.	Go distroless: use a Java based distroless image such as
gcr.io/distroless/java:11 and add your other Magnolia container
ingredients

3.	Pick an OS image for your base image and add the needed Magnolia
ingredients (Java, web application container and database).

Picking a Tomcat base image saves you the trouble of adding Java and
Tomcat to your image and may save you some work down the road
with updates to the image. If you want to store your JCR repository in a
relational database, you’ll have to add it into your image but you can also
use an embedded database like H2 or Derby to run Magnolia.

Picking a database image gets you an underlying OS image to start, but
you have to add Java and Tomcat to your image to run Magnolia.

On the other hand, picking an OS image gives you full control over what
you add into your Magnolia image but also leaves you with the work of
maintaining and updating what you added.

4

Magnolia in a Can

Look over the Magnolia certified stack before picking your
base image.

Pick a well-known image, one that aligns with your skill set
and you are familiar with operating.

When picking a distro image, pick a distro that is part of
the Magnolia certified stack.

RECOMMENDATION

Going distroless forecloses one option for your Magnolia container:
running both a separate relational database and web app container (with
Magnolia inside of course) in the same Docker container: launching
both a relational database and the web container with one CMD or
ENTRYPOINT would mean adding more ingredients into your distroless
base image, a shell, a relational database and other utilities.

We test Magnolia releases against a range of operating systems:

	• Ubuntu - all currently supported LTS releases
	• SuSE Linux Enterprise Server - all releases with existing (SuSE)

general support
	• Fedora - latest two releases
	• Red Hat Enterprise Linux Server

	• For Magnolia 5.x: All releases with full support or maintenance
support

	• For Magnolia 6.x: RHEL 7 (and later) with full support or
maintenance support

	• CentOS 6 and 7
	• Debian - all currently supported LTS releases
	• Windows Server 2012 R2
	• Windows 2019 Standard or Datacenter
	• Windows 10

Magnolia may run on distro images that are not in the certified stack
but the additional testing that goes into the certified stack may help you
avoid problems down the road.

5

Magnolia in a Can

Alpine, a popular compact image, won’t run Magnolia out
of the box. The system libraries are incompatible with
some of the Java libraries used in Magnolia 6.

GOTCHA!

Alpine can be used as a base image for a Magnolia container but it takes
a bit of tweaking, see the “Hacking Docker: making Magnolia work on
Alpine” section below.

Decision #2: Choose a database for the JCR
repository

This is a big decision as the database you choose will likely have a big
impact on how you operate Magnolia in your container.

Again, it’s a good idea to take a look at the Magnolia certified stack
before picking your database.

Here are the databases in the Magnolia certified stack:

Embedded databases:
	• H2 1.4.200 and later
	• Derby 10.3.1.4 (included)

External databases:
	• MySQL 5.5 and later
	• Oracle 10g Enterprise Edition and later
	• PostgreSQL 9 and later

The embedded databases - H2 and Derby - don’t require a separate
database service to be run in your container. They store their data in files
in the file system, which makes it possible to copy the JCR repository
for Magnolia by simply copying files to a new container (more on this
later). Derby and H2 don’t have the sophisticated caching that external
databases do and are less performant than external relational databases
with large JCR repositories.

External databases require a separate database service (obviously) and
they are another thing to add into your image or a separate container
and manage when operating.

6

https://hub.docker.com/_/alpine

Magnolia in a Can

Here’s a summary of the pros and cons of each:

Embedded databases (H2 and Derby):
Pro: No additional database service to run Magnolia
Con: Less performant on large JCR repositories
Con: Must shut down Magnolia instance to back up JCR repository

External databases (MySQL, Oracle, PostgreSQL):
Pro: Better performance, especially on large repositories
Pro: Better tools for monitoring and management
Pro: Can use a single database service for multiple Magnolia instances
Con: Another service to containerize and manage

Decision #2.1: Determine whether to run Magnolia
and its database in the same container or in
separate containers

Docker’s golden rule - one service per container - makes sense in
many situations. It helps break down complex applications into their
constituent services. It makes setting up an ENTRYPOINT or CMD in
your image easier when managing only one service.

But as a whole, Magnolia is a single service. The underlying JCR
repository that Magnolia needs isn’t a separate thing and can’t really be
operated on its own even if the JCR repository is stored in a different
database service.

There are different ways to resolve this quandary:

Use an embedded database - H2 or Derby - for Magnolia’s
JCR repository. No database service is needed, and only one
container is required to run Magnolia.

The downsides: H2 and Derby may not be as performant with large JCR
repositories and you won’t have an extensive toolbox for monitoring and
managing the database.

Be aware of your use case. Operating the Magnolia author
instance versus the Magnolia public instance(s).

RECOMMENDATION

7

Magnolia in a Can

Operating a Magnolia author instance will be different from operating
Magnolia public instances. The JCR repository for a Magnolia author
instance is valuable: it is the master copy of all content, especially
content under development and not yet published. That content should
be protected to prevent its loss: the JCR repository of your Magnolia
author instance should be bullet-proofed, backed up and monitored.

While the author instance will probably be on a private network, the
public instances will probably be on a public network. Usually there will
be a single author instance, but often there will be several, maybe many,
public instances.

The JCR repository of a Magnolia public instance isn’t unique: Magnolia
public instances will each have a copy of all published content in their
respective JCR repositories. If the repository of a Magnolia public
instance running in a container becomes corrupted, you can shut it
down and start a new container to replace it.

The public instances are disposable and you may want to add or
remove new public instances to meet changing traffic. Managing public
instances is easier if everything is in a single container, especially if you
are automating the management.

One container for Magnolia public instances and two containers for
author instances probably means you will need separate images for
author instances and public instances. Crafting and maintaining two
images instead of one is more work, but trying to build an image for both
may be complex as well.

The database service and the web container for
the Magnolia author instance should be in separate
containers.

The database service and the web container for Magnolia
public instances should be in the same container.

RECOMMENDATION

8

Magnolia in a Can

Decision #3: Choose an application server

Magnolia runs inside an application server so your image must set up
and launch the server.

The certified stack offers several application servers to choose from:

	• Apache Tomcat
	• Wildfly
	• JBoss EAP
	• IBM WebSphere Application Server
	• IBM WebSphere Liberty

Choose an application server that you are familiar with
operating.

RECOMMENDATION

Again, it is best to pick an application server you are familiar with;
if that’s Tomcat (the most commonly used application server), use
Tomcat. If it is another application server, use that.

Other application servers supporting Java web applications may be
capable of running Magnolia, but application servers in the certified
stack are tested against Magnolia releases.

Decision #4: Choose a Java version

This is probably the easiest decision of all.

Magnolia runs on Java 8, 9, 10, 11, 12 and 13. Magnolia can be run with
a JDK or a JRE, though if you want to use your image in a development
environment, you probably will want to use a JDK.

Magnolia runs on both Oracle and OpenJDK Java.

Your choice of application server may determine your choice of Java
version. Tomcat versions may require you use a certain Java version.

9

Magnolia in a Can

Use Java 11 or later for better support
running in a container: JVM flags like
AlwaysActAsServerClassMachine can improve JVM
performance when running Magnolia in a container.

RECOMMENDATION

You will probably want to run Magnolia in a container using
the least amount of resources possible. JVM flags such as
AlwaysActAsServerClassMachine are a good starting point for tuning
garbage collection.

10

Magnolia in a Can

Containerizing Your Magnolia Web App
Now that you have made all the decisions about the ingredients for your
image, it’s time to containerize your Magnolia web app.

By default, your Magnolia web app requires your input when starting up.
You will be prompted to:

	• Approve the installation of Magnolia
	• Enter your Magnolia license

To start Magnolia without your intervention you can enable auto updates
and configure your license.

Enable Auto Update

When Magnolia starts up for the first time or a Magnolia module has
been updated, Magnolia will prompt you before proceeding with the
installation or update.

You can avoid this prompt by setting a Magnolia property:

magnolia.update.auto=true

When set to true, Magnolia will proceed with installing or updating itself
without prompting.

Magnolia properties are a powerful way to control and run Magnolia and
come in handy when containerizing your Magnolia web application. We
will discuss other Magnolia properties later on.

Make your Magnolia web application self-starting. BEST PRACTICE

11

Magnolia in a Can

Configure the Magnolia License

Magnolia expects to find its license in the JCR repository. You can see
your Magnolia license by opening the Configuration app and navigating
to /modules/enterprise/license.

If Magnolia does not find its license there, Magnolia will prompt you to
enter the license during start-up.

There are several options for adding your Magnolia license:

	• Bundling the license in the Magnolia web app: create a Maven
module that sets the license when it is loaded.

	• Setting the license from the container environment: use the
Configuration Injection module to add your license at runtime.

	• Building a custom Magnolia Java module: a custom module can
retrieve and set the license when Magnolia starts.

Each of the above options has pluses and minuses:

Bundling the license in the Magnolia web app

Bundling your license into your Magnolia web app puts an expiration
date on your web app. When the Magnolia license expires, the Magnolia
web app will start but some features will be disabled. Including the
Magnolia web app in your Docker image means your Docker image has
an expiration date as well.

This is typically not an issue, because chances are that you will update
the Magnolia web app before the license expires, so including an
updated license won’t be a lot of extra work.

However, bundling the license in a module and including it in your
Magnolia web app could be considered a security risk. Your license
could be recovered from the Magnolia WAR file, your source code, or
Docker image.

To protect your Magnolia license, make sure that your artifact and
source code repositories as well as your Docker artifacts are secure.

12

Magnolia in a Can

Setting the license from the container environment

You can’t set the Magnolia license through Magnolia properties out-
of-the-box, but you can use the Configuration Injection module from
Magnolia’s Incubator. This module allows you to set the Magnolia license
from a Magnolia property when Magnolia starts up. This approach
allows you to set the license using a Docker ENV variable when starting
your container decoupling the license from the Magnolia web app.

Setting the Magnolia license from the container environment could be
considered a security risk as well, but it minimizes the number of places
the Magnolia license can be recovered from. To eliminate this risk, you
could use your container platforms's security features, for example by
passing your license as a Secret.

Building a custom Magnolia Java module

Don’t like either bundling the license in the Magnolia web app or setting
the license from the container environment? Or do you have additional
requirements, for example, retrieving your Magnolia license from a
secure vault? Then building a custom Magnolia Java module may be the
best option for you.

Magnolia Java modules have lots of useful tools like startup tasks
and dependency management. This option gives you total freedom to
implement a solution that meets your needs.

Building a custom Magnolia Java module requires some knowledge of
Java, Java tools like Maven, and possibly the Content Repository API for
Java (a.k.a. JCR), as well as an understanding of how Magnolia is put
together.

13

Magnolia in a Can

Of the options above, this is what we recommend:

Set the license from the container environment using the
Configuration Injection module.

BEST PRACTICE

The Configuration Injection module introduces the system property
magnolia.inject.config. It can be used to create a startup task that
sets the Magnolia license at /modules/enterprise/license:

magnolia.inject.config=createPath:/modules/
enterprise/license;setProperty:/modules/enterprise/
license,owner,<email for license>;setProperty:/modules/
enterprise/license,key,<your Magnolia license key>

For more information on the Configuration Injection module see
https://wiki.magnolia-cms.com/display/SERVICES/Configuration+Injection.

If you prefer to bundle the license in the Magnolia web app you can
create a Magnolia Java module that automatically loads the license on
startup.

Magnolia Java modules are one of the basic ways to customize
and extend Magnolia. They require some Java coding to produce a
Java jar file, but in our case the amount of coding is limited. You can
also find a template for a license bundle module here: https://git.
magnolia-cms.com/projects/SERVICES/repos/autolicense/browse.

For more information on developing Magnolia Java modules, check the
following links:

https://documentation.magnolia-cms.com/display/DOCS62/How+to+c
reate+and+use+a+custom+Magnolia+Maven+module+for+custom+Jav
a+components

https://documentation.magnolia-cms.com/display/DOCS62/
Bootstrapping+in+Maven+modules

14

https://wiki.magnolia-cms.com/display/SERVICES/Configuration+Injection
https://git.magnolia-cms.com/projects/SERVICES/repos/autolicense/browse
https://git.magnolia-cms.com/projects/SERVICES/repos/autolicense/browse
https://documentation.magnolia-cms.com/display/DOCS62/How+to+create+and+use+a+custom+Magnolia+Maven+module+for+custom+Java+components
https://documentation.magnolia-cms.com/display/DOCS62/How+to+create+and+use+a+custom+Magnolia+Maven+module+for+custom+Java+components
https://documentation.magnolia-cms.com/display/DOCS62/How+to+create+and+use+a+custom+Magnolia+Maven+module+for+custom+Java+components
https://documentation.magnolia-cms.com/display/DOCS62/Bootstrapping+in+Maven+modules
https://documentation.magnolia-cms.com/display/DOCS62/Bootstrapping+in+Maven+modules

Magnolia in a Can

Magnolia properties and containerization

Magnolia properties control key aspects of Magnolia when it is running.

Above we mentioned the Magnolia property magnolia.update.auto,
but there are many other Magnolia properties you may want to use in
your Docker image.

Magnolia properties can control:

	• Whether Magnolia runs as an author instance or a public instance
	• The configuration of the JCR repositories
	• Database connection
	• File system locations for:

	• Resources
	• Light modules
	• Magnolia publication keys
	• Temporary files

Magnolia properties can be set in property files included in your
Magnolia web application but you can override any Magnolia property by
setting a Java property with the same name to a new value.

For more on Magnolia property files, see https://documentation.
magnolia-cms.com/display/DOCS62/WAR+file+with+multiple+configur
ations#WARfilewithmultipleconfigurations-magnolia.propertiesfile.

Here’s a quick tour of some of the more interesting Magnolia properties:

magnolia.home: the granddaddy of all Magnolia properties,
magnolia.home is used to set several other Magnolia properties
specifying locations like magnolia.resources.dir (location of
Magnolia resources and light content), magnolia.cache.startdir
(location of persisted Magnolia cache files), magnolia.upload.
tmpdir (destination of files uploaded to Magnolia), magnolia.
repositories.home (location of Magnolia’s JCR repository),
magnolia.logs.dir (location of Magnolia log files) and magnolia.
author.key.location (location of the Magnolia publication key).
magnolia.home is used to specify other file system destinations used
by Magnolia under a parent directory.

Don’t forget: you can still override individual Magnolia properties defining
locations.

15

https://documentation.magnolia-cms.com/display/DOCS62/WAR+file+with+multiple+configurations#WARfilewithmultipleconfigurations-magnolia.propertiesfile.
https://documentation.magnolia-cms.com/display/DOCS62/WAR+file+with+multiple+configurations#WARfilewithmultipleconfigurations-magnolia.propertiesfile.
https://documentation.magnolia-cms.com/display/DOCS62/WAR+file+with+multiple+configurations#WARfilewithmultipleconfigurations-magnolia.propertiesfile.

Magnolia in a Can

magnolia.update.auto: if true, Magnolia doesn't wait for user input
to install or update Magnolia.

magnolia.resources.dir: the location of Magnolia light modules.
Your Magnolia web application will probably be a combination of
Magnolia Java modules and Magnolia light modules consisting of files
read from the file system.

If you want to use light modules in your Magnolia container, you may
want to set magnolia.resources.dir to a Docker volume where you
add files to and share among your Magnolia containers.

magnolia.repositories.home: the directory where Magnolia stores
JCR repository files and Lucene indices. You may want to persist,
add or modify these files for your Magnolia container. magnolia.
repositories.home lets you set its location.

magnolia.repositories.jackrabbit.config: the location of
the Jackrabbit JCR configuration file. This file contains database
configuration and file locations.

magnolia.logs.dir: the directory where Magnolia log files will be
stored.

magnolia.bootstrap.dir: the directories where bootstrap content
will be loaded from.

magnolia.bootstrap.authorInstance: one of the most
fundamental Magnolia properties. It controls whether Magnolia will run
as an author instance (true) or as a public instance (false).

magnolia.develop: improves Javascript generation performance
when developing, should be set to false for production deployments.
You may want to change this based on how the container is used
(development versus production containers).

magnolia.author.key.location: the location of the private and
public key used for publication of content from author to public instances.

You can also define your own properties and use them in Magnolia
configuration files. This includes the Jackrabbit JCR configuration file.

16

Magnolia in a Can

Here’s an example:

The properties magnolia.database.url, magnolia.database.
user and magnolia.database.password now specify the database
connection used by the JCR repository and can be set when you build
your Docker image or run the container.

There are a couple of ways to do this:
	• In your ENTRYPOINT script
	• If you are using Tomcat, in the CATALINA_OPTS environment variable

or a setenv.sh script

Here’s a simple example of a setenv.sh script that initializes
CATALINA_OPTS:

<DataSources>
 <DataSource name="magnolia">
 <param name="driver" value="com.mysql.jdbc.Driver" />
 <param name="url" value="jdbc:mysql://localhost:3306/magnolia" />
 <param name="user" value="root" />
 <param name="password" value="password" />
 <param name="databaseType" value="mysql"/>
 <param name="validationQuery" value="select 1"/>
 </DataSource>
</DataSources>

#!/usr/bin/env bash

Container settings - Adjust these default settings according to your needs

#
JVM settings
#

Set key Magnolia properties as Java properties, e.g.
-Dmagnolia.update.auto=true when running the JVM
containing Magnolia.

BEST PRACTICE

17

Magnolia in a Can

export CATALINA_OPTS="$CATALINA_OPTS \
 -server \
 -Djava.security.egd=file:/dev/./urandom \
 -Djava.awt.headless=true"

#
JVM memory settings
#
export CATALINA_OPTS="$CATALINA_OPTS \
 -Xms$JVM_XMS \
 -Xmx$JVM_XMX"

This script defines the Java properties java.security.egd and java.
awt.headless as well as the starting and maximum heap size for the
JVM. It also enables the Java HotSpot Server VM.

The starting and maximum heap sizes are set from environment
variables when the JVM is started and could be set from ENV variables
you define for your Docker image.

With so many Magnolia properties, what properties should you set
through ENV and ARG parameters?

It’s hard to give absolute recommendations without qualifications for
every situation, but we recommend thinking about what you want to end
up with: one image that can be run in any situation (possible, but you’ll
probably end up with a lot of ENV parameters and possibly encounter
problems setting several related Magnolia properties) or several images
with some key Magnolia properties set as ARGs and other Magnolia
properties set as ENV properties.

Use ENV and ARG parameters to set important Magnolia
properties.

BEST PRACTICE

18

Magnolia in a Can

Here’s a breakdown of how commonly used Magnolia properties might
be considered as ENV or ARG parameters:

ENV parameters

Magnolia display properties like magnolia.ui.sticker.
environment, magnolia.ui.sticker.color, magnolia.
ui.sticker.color.background and magnolia.webapp.

These properties can be used to customize the appearance of Magnolia
Admincentral to help users identify what Magnolia instance they are
using, such as a production, test or dev instance; and the Magnolia
instance, such as author or public instance.

ARG parameters

Magnolia path properties like magnolia.resources.dir, magnolia.
repositories.home, magnolia.bootstrap.dir, magnolia.logs.
dir and magnolia.author.key.location.

These locations could be set with ENV parameters, but you will probably
want a standard layout for your Magnolia related files and directories
for all your Magnolia containers. You can implement a standard file
structure for Magnolia by setting these as ARG parameters.

ENV or ARG parameters

Magnolia runtime properties like magnolia.bootstrap.
authorInstance and magnolia.develop.

Magnolia Jackrabbit properties like magnolia.repositories.
jackrabbit.config or custom Java properties used in Jackrabbit
configuration or the magnolia.properties file.

These are Magnolia properties that could be set as ARG parameters
if you want Docker images with fixed key Magnolia properties or ENV
parameters if you want to defer the setting of Magnolia properties to
deployment time.

19

Magnolia in a Can

JVM settings
While you are setting your Magnolia properties, don’t forget to set
important JVM parameters, such as:

	• Starting heap size
	• Maximum heap size
	• Garbage collection settings

Set a starting heap size of at least 1 GB, e.g. -Xms1g.

Monitor memory usage in your Magnolia web app under
realistic conditions to determine the optimal maximum
heap size.

BEST PRACTICE

BEST PRACTICE

Magnolia does a lot of work on starting up; a larger starting heap size
will minimize start up duration by reducing time for collecting garbage.

We can’t give a blanket recommendation for what your maximum
heap size should be. It really depends on your Magnolia web app, but
maximum heap sizes from 2 to 4 GB are common. Keep in mind that
bigger is not necessarily better: a very large heap might reduce the
number of garbage collections but make them longer, interrupting
request handling.

20

Magnolia in a Can

This sets better garbage collection defaults for a Docker container and
helps you avoid less efficient serial garbage collection.

We have touched on the complicated subject of JVM garbage collection
configuration.

Given different JVMs, different servlet containers, different
Magnolia web apps, it’s hard to go beyond the general
recommendations we have made (starting and max heap settings, the
AlwaysActAsServerClassMachine flag).

There can be performance gains by tuning the garbage collection
of your JVM, but there are a couple of caveats: you should test your
changes in realistic conditions (as we mentioned earlier) and avoid
tunnel vision.

'Realistic conditions' means reproducing the requests and traffic volume
you expect or want to serve with a Magnolia instance. 'Tunnel vision'
means not ignoring other ways to gain performance. In general, other
means like implementing a good caching strategy, tuning the Tomcat
connection or looking for performance bottlenecks in your Freemarker
templates will yield bigger performance wins than tuning your JVM
garbage collection. And don’t forget, if you containerized your Magnolia
public instance, you could always spin up a new container to handle
more traffic.

Use the -XX:+AlwaysActAsServerClassMachine flag if
your JVM supports it.

BEST PRACTICE

21

Magnolia in a Can

Or

Magnolia usually needs more than 1024 open files to run, so set the
open file limit to something generous when running the Magnolia
container:

docker run -it --ulimit nofile <soft limit>:<hard
limit> <your image>

See: https://docs.docker.com/engine/reference/commandline/run/#set-
ulimits-in-container---ulimit

ERROR org.apache.jackrabbit.core.SearchManager SearchManager.java(onEvent:431)
17.01.2008 12:52:00 Error indexing node.
java.io.FileNotFoundException: /usr/local/tomcat/webapps/myApp/repositories/
magnolia/workspaces/config/index/redo.log (Too many open files)

You have hit the open files limit if you see errors like this:

SEVERE: Endpoint ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=80] ignored
exception: java.net.SocketException: Too many open files
java.net.SocketException: Too many open files

Docker container runtime settings

One important container setting often overlooked when running
Magnolia is the open files limit.

Magnolia needs a generous open files limit to run.
An open files limit of 1024 in a container may not be
sufficient, especially if you use an embedded database.

GOTCHA!

22

https://docs.docker.com/engine/reference/commandline/run/#set-ulimits-in-container---ulimit
https://docs.docker.com/engine/reference/commandline/run/#set-ulimits-in-container---ulimit

Magnolia in a Can

Once you have created a container including the Magnolia web
application and all its ingredients, you may want to think about what is
going to happen when you launch a container based on your image.

Suppose your Magnolia container is going to be used as a Magnolia
public instance. In that case your instance will have defined web pages,
images, resources and other web content.

Some of that content - page, area and component templates,
customizations of Magnolia apps and configuration and more - may be
defined as 'light' content.

Some of the content may be bootstrapped from Magnolia modules in
your Magnolia web application but you may want to load other content
when starting Magnolia in a new container.

Suppose you have this scenario: a Magnolia author instance and two
Magnolia public instances running in Docker containers built from your
Magnolia image. You want to start a third Magnolia public instance to
handle increased traffic.

That new Magnolia public instance must have the same content (web
pages, images, resources, etc.) as the other public instances.

There are a few ways of initializing content on a new Magnolia public
instance:

	• Restore the JCR repository on the new instance from a backup
	• Synchronize the content from the Magnolia author instance
	• Import an export the JCR repository
	• Add bootstrapped content to a Magnolia module included in the

Magnolia web app

You can even use a mixture of the above techniques to initialize the
content on a new Magnolia instance.

Containerizing Your Content

23

Magnolia in a Can

The above techniques may affect how you build your image. For
example, you could:

	• Add logic to your CMD or ENTRYPOINT script to retrieve a Magnolia
backup and restore it before starting the web container and Magnolia.

	• Chain together separate scripts in your CMD or ENTRYPOINT, one
to retrieve a backup and restore it, another one to launch the web
container and Magnolia.

	• Add logic to your CMD or ENTRYPOINT script to launch content
synchronization between your new Magnolia public instance and the
Magnolia author instance.

Capturing content: backup and restore

If you have a running Magnolia instance with up-to-date content, you can
make a copy of the content and restore it on a new Magnolia instance.

Let’s take a closer look at your options for backing up and restoring
Magnolia content.

Magnolia Backup module

Magnolia has its own backup and restore tool: https://documentation.
magnolia-cms.com/display/DOCS62/Backup+module

The Backup module can make a copy of your entire JCR repository
and restore it on another Magnolia instance, even if the new Magnolia
instance uses a different JCR repository configuration. This is a useful
feature if you are transferring data between different environments, for
example, between a Magnolia production instance that uses MySQL
for its JCR repository and a Magnolia development instance using a
different database, like Derby, to store its repository.

The Backup module can read and write zipped backups to reduce the
size of large repositories.

A backup can be kicked off via Magnolia's command REST
API (cf. https://documentation.magnolia-cms.com/display/
DOCS62/Commands+endpoint+API), or by a scheduled job
(https://documentation.magnolia-cms.com/display/DOCS62/
Scheduler+module).

24

https://documentation.magnolia-cms.com/display/DOCS62/Backup+module
https://documentation.magnolia-cms.com/display/DOCS62/Backup+module
https://documentation.magnolia-cms.com/display/DOCS62/Commands+endpoint+API
https://documentation.magnolia-cms.com/display/DOCS62/Commands+endpoint+API
https://documentation.magnolia-cms.com/display/DOCS62/Scheduler+module
https://documentation.magnolia-cms.com/display/DOCS62/Scheduler+module

Magnolia in a Can

There are a few things to be aware of when using the Backup module:

	• A backup can fail if Magnolia is writing to the JCR repository while the
backup is taken. To overcome this issue you can specify retry options.
The Backup module will then wait and try to take the backup again.

	• Magnolia doesn’t have to be running to make a backup. The Backup
module can be run from the command line. This prevents failed
backups due to changes to the JCR repository.

	• You can’t restore a backup while Magnolia is running. When restoring
a backup, Magnolia must be stopped.

	• The Backup module can only backup and restore the entire JCR
repository. It cannot back up and restore individual workspaces or
parts of workspaces.

	• The Backup module may not be suitable for very large JCR
repositories. It may be slower than a native database backup and
restore.

Magnolia import and export

You can export JCR content from Magnolia in XML or YAML and import
it in a different Magnolia instance. To export or import content Magnolia
must be running .

Like with the Backup module, exporting and importing JCR content
doesn’t depend on your JCR configuration. Unlike with the Magnolia
Backup module, you can choose what content to restore - an entire JCR
workspace or part of a JCR workspace.

However, that flexibility comes at a price. You can’t export the entire JCR
repository in a single job, so you will need to manage a collection of files
on import. You will probably need to automate exporting and importing
using a script that handles the resulting files.

Exporting and importing will be slower than backing up and restoring
with the Backup module, especially if your JCR repository is large.

Native Database Backup and Restore

You don’t have to use Magnolia to backup and restore your JCR content.

Most of your content will be stored in a database and you can use
database tools to back up and restore your JCR content.

25

Magnolia in a Can

Your JCR content may not be entirely stored in the
database. Some of it may be stored in files.

GOTCHA!

What gets stored in the database and what gets stored in files depends
on the JCR configuration used by Magnolia.

If your JCR configuration uses a file data store like this:

Or if your JCR configuration has a workspace that uses
FilePersistenceManager (e.g. org.apache.jackrabbit.core.
persistence.bundle.BundleFsPersistenceManager
or org.apache.jackrabbit.core.persistence.xml.
XMLPersistenceManager), you will also have to make copies of any
files Jackrabbit is using to store your JCR content.

You can configure Jackrabbit to use in-memory data stores or database-
based data stores and persistence managers to avoid storing any JCR
content in files, of course, but there may be performance tradeoffs.

Using a native database backup and restore tool will probably be faster
than using the Magnolia Backup module or Magnolia export and import.
But, remember that you need to back up the content stored in the
database and the content stored in the file system.

Synchronizing content

Another option to synchronize your JCR content to a new Magnolia
instance is Magnolia's Synchronization module. It uses the same
mechanisms that are used to publish content to transfer data from the
Magnolia author instance to the new public instance.

The Synchronization module also has a REST API, the Synchronization
REST module, that can help manage the transfer of content.

<DataStore class="org.apache.jackrabbit.core.data.FileDataStore">
 <param name="path" value="${rep.home}/repository/datastore"/>
 <param name="minRecordLength" value="1024"/>
</DataStore>

26

Magnolia in a Can

More information on these modules can be found here:

https://documentation.magnolia-cms.com/display/DOCS62/
Synchronization+module

https://documentation.magnolia-cms.com/display/DOCS62/
Synchronization+REST+module

Both the Magnolia author instance and the new Magnolia public
instance have to be running to synchronize.

There are a few considerations you should be aware of when using the
Synchronization module:
	• Synchronization will be slower than backup and restore.
	• Synchronization will put some load on the Magnolia Author instance

to select, prepare and send the content to the public instance.
	• Synchronization is done per JCR workspace and you may need

to synchronize several workspaces in the JCR repository to your
new public instance with as many synchronization requests to the
Magnolia author instance.

Given these caveats, we recommend:

Use the Backup module for most of your content and use
the Synchronization module to update only the content
that has changed since the backup was made.

To avoid overloading the Magnolia author instance, use
the Synchronization REST module to check for running
synchronizations before launching a new synchronization.

BEST PRACTICE

BEST PRACTICE

You can specify a fromDate parameter when synchronizing using the
REST API or synchronization commands. Only content that has been
modified since the fromDate will be sent to the target public instance.

27

https://documentation.magnolia-cms.com/display/DOCS62/Synchronization+module
https://documentation.magnolia-cms.com/display/DOCS62/Synchronization+module
https://documentation.magnolia-cms.com/display/DOCS62/Synchronization+REST+module
https://documentation.magnolia-cms.com/display/DOCS62/Synchronization+REST+module

Magnolia in a Can

The Magnolia web app isn’t the only place to create your web project.
You can also use Magnolia 'light development' to define:
	• Web page, area and component templates
	• Content types
	• Content apps
	• REST endpoints
	• Customizations of Magnolia apps
	• Light modules

Light development uses YAML files to build 'definitions' - a new page
template, for example - and make it available in Magnolia without
rebuilding and redeploying your Magnolia web app.

Unlike the Magnolia web app, if you want to change your light content,
you change the definition file directly and Magnolia will reload the
definition as soon as it is saved.

Think of your Magnolia web project as being contained in:
	• The Magnolia web app bundle (usually built with Maven and always

present)
	• Magnolia light content in definition files (optional)

Your Docker image might contain both the Magnolia web app and light
content and definitions.

Light content is made to be changed and extended. The light content in
your Magnolia project will probably be updated much more frequently
than the Magnolia web app itself (which is a good thing, saving you from
rebuilding and redeploying the Magnolia web app), so your Magnolia
Docker image should make deploying light content easy.

Which brings us to our first recommendation when using light content in
your Magnolia web project:

Containerizing Your Light Content

Don’t bundle light content into your Magnolia web app. BEST PRACTICE

Bundling your light content into your Magnolia web app would mean you
would have to change your web app when your light content changes,
possibly update your Docker image, and if so, spin up new containers
from the changed image.

28

Magnolia in a Can

Add your light content when you start your Magnolia
container.

Define a volume in your Docker image for light content.

BEST PRACTICE

BEST PRACTICE

If your Magnolia web app and light content are decoupled, you don’t
need to include your light content in your Docker image and can easily
add the light content when you launch a container.

Light content is just a collection of YAML files, so it is best to provide a
volume for them in your Docker image.

Reminder: Magnolia needs to know where its light content is stored,
specified by the Magnolia property magnolia.resources.dir. Your
image should set magnolia.resources.dir to point to the volume
where light content will be stored.

Because light content will be deployed and updated outside of your
Docker image, your image should accommodate different requirements.

Your web project will probably be run in different environments:
	• A production environment to serve your live content
	• A test environment to test new features and content
	• A development environment(s) to build new features and content

Each of these environments will use different versions of light
content and your Docker image should be able to run in any of these
environments.

One way to achieve this is to use your source code management tool.
You probably will have different versions of your light content files in
your SCM repository: the current development versions, the current
candidates for release under test before deployment and the current
versions deployed in your production environment.

29

Magnolia in a Can

Many SCM tools use tags or branches to designate specific groups of
files. Many also provide hooks to automatically execute scripts when a
branch or tag is changed.

You could automate the updates to your different environments as
follows:
	• Production environments: When the “production” branch of your light

content files is changed, check out the changed light content files into
the volumes used to store light content in your production containers.

	• Test environments: When the “test” branch of your light content files
is changed, check out the changed light content files into the volumes
used to store light content in your test containers.

	• Development environments: Send out a notification that the main
development branch has been changed so developers can check out
or merge new changes when they are ready.

Taking the automated management of light content a step farther is
possible: rather than having separate volumes for Docker containers
in different environments, consider sharing volumes among running
containers:
	• Production environment: Shared volume for light content used by

production containers
	• Test environment: Shared volume for light content used by test

containers
	• Development environments: Private volumes for light content for

developers to avoid breaking or overwriting light content files

Automate the deployment of your light content with your
source code management tool.

BEST PRACTICE

30

Magnolia in a Can

Hacking Magnolia

The stack trace goes a long way down, but here’s the root cause:

ERROR info.magnolia.admincentral.findbar.search.ResultCollector 14.08.2019 14:29:33
-- An error occurred during the search process, therefore an empty collection
will be returned.
java.util.concurrent.CompletionException: com.google.common.util.
concurrent.UncheckedExecutionException: info.magnolia.objectfactory.
MgnlInstantiationException: Failed to create instance of [interface info.magnolia.
periscope.rank.ResultRanker]
	 at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.
java:314) ~[?:?]
	 at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFutu
re.java:319) ~[?:?]
	 at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.
java:1702) ~[?:?]
	 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.
java:1128) ~[?:?]
	 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.
java:628) ~[?:?]
	 at java.lang.Thread.run(Thread.java:834) [?:?]

Caused by: java.lang.NoClassDefFoundError: Could not initialize class org.nd4j.
linalg.factory.Nd4j

Making Magnolia work on Alpine

Alpine has not been certified by Magnolia, because it does
not meet the requirements to run all Magnolia features.
Tread carefully.

GOTCHA!

If you choose an Alpine or an Alpine-derived image like openjdk:8-alpine
as the base image for your Magnolia container, you may see errors like
these in the Magnolia log when starting Magnolia or logging in:

31

Magnolia in a Can

Here’s the problem: the nd4j library is a native Java library depending on
system libraries not present on Alpine and the JVM itself.

Magnolia's Periscope Result Ranker module (https://
documentation.magnolia-cms.com/display/DOCS62/
Periscope+Result+Ranker+module) uses the nd4j library. This module
uses neural networks to store Find Bar search results and rank new
search results by relevance for an improved user experience.

There is no fix for the native nd4j libraries for Alpine itself. However, you
can choose to not use the Periscope Result Ranker to avoid the library
incompatibilities.

You can:
	• Exclude the module from your Magnolia web app
	• Disable the Periscope result ranker in your Magnolia web app

#
A fatal error has been detected by the Java Runtime Environment:
#
SIGSEGV (0xb) at pc=0x00000000000021c6, pid=1, tid=0x00007fef9c12fb10
#
JRE version: OpenJDK Runtime Environment (8.0_212-b04) (build 1.8.0_212-b04)
Java VM: OpenJDK 64-Bit Server VM (25.212-b04 mixed mode linux-amd64 compressed
oops)
Derivative: IcedTea 3.12.0
Distribution: Custom build (Sat May 4 17:33:35 UTC 2019)
Problematic frame:
C 0x00000000000021c6
#
Failed to write core dump. Core dumps have been disabled. To enable core
dumping, try "ulimit -c unlimited" before starting Java again
#
An error report file with more information is saved as:
/usr/local/tomcat/hs_err_pid1.log
#
If you would like to submit a bug report, please include
instructions on how to reproduce the bug and visit:
https://icedtea.classpath.org/bugzilla
#

Or the JVM crashes when you try to log in, like this:

32

https://documentation.magnolia-cms.com/display/DOCS62/Periscope+Result+Ranker+module
https://documentation.magnolia-cms.com/display/DOCS62/Periscope+Result+Ranker+module
https://documentation.magnolia-cms.com/display/DOCS62/Periscope+Result+Ranker+module

Magnolia in a Can

If you still want to include the Periscope result ranker module in your
Magnolia web app, because you want to run the same Magnolia web
app in both Alpine containers and non-Alpine containers, you can disable
the result ranker:
	• Through a Magnolia Incubator module that allows you to control the

result ranker with a Magnolia property
	• Through a light module that turns off the result ranker

The Periscope Control module allows you control whether the Periscope
result ranker is enabled or disabled through the Magnolia property
magnolia.periscope.resultRanking.

You can set magnolia.periscope.resultRanking in a Magnolia
properties file bundled in your Magnolia web app or you can set it
as Java property just like other Magnolia properties we have already
discussed.

<dependency>
 <groupId>info.magnolia.dx</groupId>
 <artifactId>magnolia-dx-core-webapp</artifactId>
 <type>war</type>
 <exclusions>
 <exclusion>
 <groupId>info.magnolia.periscope</groupId>
 <artifactId>magnolia-periscope-result-ranker</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>info.magnolia.dx</groupId>
 <artifactId>magnolia-dx-core-webapp</artifactId>
 <type>pom</type>
 <exclusions>
 <exclusion>
 <groupId>info.magnolia.periscope</groupId>
 <artifactId>magnolia-periscope-result-ranker</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Excluding the Periscope result ranker module will reduce the size of your
Magnolia WAR file by about 207 megabytes worth of various jar files
used by the Periscope result ranker module and its dependencies.

33

Magnolia in a Can

To use the Periscope Control module, add the following Maven
dependency to your Magnolia web app POM:

<dependency>
 <groupId>info.magnolia.services</groupId>
 <artifactId>periscope-control</artifactId>
 <version>1.0</version>
</dependency>

version: 1.0
dependencies:
 core:
	 version: 6.1/*
 periscope-core:
	 version: 1.2.2/*

Once you added the Periscope Control module to your web app, you
can turn the result ranker on or off by setting magnolia.periscope.
resultRanking through ENV or ARG variables passed to Magnolia
through your container environment.

If you don’t want to use the Periscope Control module, you can use
definition decoration (see https://documentation.magnolia-cms.com/
display/DOCS62/Definition+decoration) to disable the result ranker.

Here’s how to disable the Periscope result ranker by decorating its
configuration:

1. Create a directory at <magnolia.resources.dir>/<your light
module name>. This is the starting point for a new light module that
Magnolia will load.

2. Create a file <magnolia.resources.dir>/<your light module
name>/module.yaml containing:

This is your light module declaration. It has two dependencies, one
for the Magnolia core module (must be v6.1 and later) and one for the
Periscope core module (must be v1.2.2 and later).

34

https://documentation.magnolia-cms.com/display/DOCS62/Definition+decoration
https://documentation.magnolia-cms.com/display/DOCS62/Definition+decoration

Magnolia in a Can

3. Create a decoration file for periscope-core at <magnolia.
resources.dir>/<your light module name>/decorations/
periscope-core/core.yaml containing:

resultRankerConfiguration:
 disabled: true

This decoration will disable the Periscope result ranker when Magnolia
loads your light module.

Of course, if you already have light modules, you could just add the
definition decoration to an existing light module.

Finally, there’s one last thing to be aware of if you build your own light
module for controlling the Periscope result ranker:

Don’t forget to include the dependencies on core and
periscope-core in your light module declaration! The
dependencies ensure that your updated configuration for
Periscope is correctly loaded.

GOTCHA!

35

Magnolia in a Can

Running Magnolia in memory-limited containers

If you are using Magnolia 6 or later and want to make it work in a
container with limited memory, you should limit the memory used by the
Periscope Result Ranker module.

You have several options for putting Magnolia on a memory diet:
	• Turn off result ranking
	• Set Java properties to control the memory used by the Periscope

Result Ranker module

You may consider doing both, depending on how you use Magnolia:
	• Magnolia public instances
	• Magnolia author instance

Periscope result ranking is useful to content authors working in
Admincentral, usually on a Magnolia author instance. Your content
authors probably would not be working in Admincentral on your
Magnolia public instances, so you may want to turn off Periscope result
ranking on those.

If you want to use Periscope result ranking, we recommend that you set
Java properties that limit the memory used by the result ranker:
	• org.bytedeco.javacpp.maxbytes: limits off-heap memory used

by the result ranker
	• org.bytedeco.javacpp.maxphysicalbytes: limits on-heap

memory used by the result ranker

Both org.bytedeco.javacpp.maxbytes and org.bytedeco.
javacpp.maxphysicalbytes can be absolute sizes like the
JVM starting and maximum heap sizes. They can also be specified
as relative percentages of the JVM (org.bytedeco.javacpp.
maxphysicalbytes) and the physical memory of the container (org.
bytedeco.javacpp.maxbytes).

If org.bytedeco.javacpp.maxbytes isn’t specified, a
limit of off-heap memory equal to the maximum JVM heap
size will be used. Make sure your JVM heap and memory
settings for the result ranker add up!

GOTCHA!

36

Magnolia in a Can

If you are running Magnolia in a memory-limited container, make sure
your memory is big enough to fit:
	• The maximum JVM heap
	• The maximum off-heap memory for the result ranker
	• Any other memory used by your container (OS, other processes)

For more on tuning the memory used by result ranker, see:
https://deeplearning4j.konduit.ai/config/config-memory

37

https://deeplearning4j.konduit.ai/config/config-memory

Travel & Tourism: How to Build a Digital Experience for 2020 and Beyond

38

311 W 43rd
New York, NY 10036
United States of America

Office (305) 267-3033

16 Upper Woburn Place
London WC1H 0AF
United Kingdom

Office + 44 203 741 8083

Oslo-Strasse 2
4142 Münchenstein (Basel)
Switzerland

Office +41 61 228 90 00

上海市闵行区申长路998号龙湖虹桥条
街E栋5F
智筹工场 532室

Office +86 2133 280 628

Chobot 1578
767 01 Kroměříž
Česká republika

Office +420 571 118 715

7 Temasek Boulevard
Suntec Tower One, Level 44-01
038987 Singapore

Office +65 64 30 67 78

Paseo de la Castellana 194
28046 Madrid
Spain

Office +34 91 579 85 82

Etown 1 Building
Unit 7.10
364 Cong Hoa Street
Tan Binh District
Ho Chi Minh City, Vietnam

Office +84 28-3810-6465

United States

United Kingdom

Switzerland - Headquarters

China

Czech Republic

Singapore

Spain

Vietnam

Magnolia is a leading digital experience software company. We help brands outsmart their competition
through better customer experiences and faster DX projects. Get full headless flexibility and seamless
workflows across best-of-breed digital experience stacks. Global leaders such as New York Times, JetBlue,
Avis and Atlassian all rely on Magnolia for maximum reliability, high speed project implementation and
exceptional omnichannel experiences.

info@magnolia-cms.com
www.magnolia-cms.com

Get in touch

	Magnolia in a Can
	Image Ingredients
	Decision #1: Choose a Docker base image
	Decision #2: Choose a database for the JCR repository
	Decision #2.1: Determine whether to run Magnolia and its database in the same container or in separate containers
	Decision #3: Choose an application server
	Decision #4: Choose a Java version

	Containerizing Your Magnolia Web App
	Enable Auto Update
	Configure the Magnolia License
	Magnolia properties and containerization
	JVM settings
	Docker container runtime settings

	Containerizing Your Content
	Capturing content: backup and restore
	Synchronizing content

	Containerizing Your Light Content
	Hacking Magnolia
	Making Magnolia work on Alpine
	Running Magnolia in memory-limited containers

